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Figure 1: Gated factor graph corresponding to a discrete
mixture model.

1 EP update derivations for a discrete
mixture model

We first derive EP updates in a discrete mixture model
where a discrete latent variable U € {1,..., J} is the
parent of D observed discrete variables X1, ..., Xp. We
indicate the values taken on by random variables either
by using lower-case symbols, or by writing X; = ;. Let
©;; be the multinomial parameters for X; conditioned
on U = j, with Dirichlet priors p(6;;), and and let ©; =

{©;1,...,0;7}. Given N observations D = {x!,...,xV},
the joint distribution is:
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Under a factorized approximation, the posterior ¢(u™)
of each latent variable is the product of the prior and
messages [in;(u") from factors by, i = 1..D:

(u™) H i (1) (4)

The posterior g(6;;) is the product of the prior p(6;;)
and messages 7p;;(0;;) from factors by;, n = 1..N:
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Let ¢\'(u™) be the posterior of 4™ computed without
the message fi,;(u™), and let ¢\"(6;;) be the posterior
of 0;; computed without the message 7,,;;(6;;).

The EP message from a factor b,; to the variable U™
is:
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Expectations Eqg)[d(z,0)] can be computed in closed
form; when the Dirichlet distribution ¢(f) is parame-
terized by pseudocounts A and A, is the pseudocount
indexed by x, E,g)[d(x,0)] evaluates to:
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The EP message from b,; to 0;; is:
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The quantities r,;;(6;; can be computed by considering
the cases j = j' and j # j’ separately:
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Figure 2: Gated factor graph for learning the structure
of networks in which each observed variable X; is the
child of a single latent variable Uy

2 EP update derivations for a
single-parent network with latent
structure

We now derive EP updates for a network in which there
are K latent variables and D observed variables. Each
observed variable is the child of a single latent variable
(so there are up to K mixture models), but the networkl
structure is otherwise unknown. Let X = {X;,..., Xp}
and U = {Uy,...,Ux} be the observed and latent
variables, respectively. Let G; € {1,..., K} be a la-
tent variable indicating the parent of X; in the graph,
and G = {G1, ..., Gp}. Let ©;; be the parameters for
the conditional probability of X; given that its parent
variable takes on the value j. Given N observations
D = {x!,...,x"}, the posterior over the latent struc-
ture, variables and parameters is:
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The model is shown in Figure 2, where we have col-
lapsed the discrete mixture factors byx (uf, 6;|x}") for
clarity.

We approximate the posterior by a factorized vari-

ational distribution ¢(g)g(u)q(#), and we fit the pa-
rameters using expectation propagation. The posterior
q(G; = k) over each structure variable is the product
of the prior and messages v,,(G; = k), n = 1,.... N
from factors hy;:

q(Gi = k) o H'Ym i =k) (16)

The posterior of each latent variable g(u}) is the prod-
uct of the prior and messages vp;i(u}) from the factors
hniy, t = 1..D.

q(uft) o< p(upt) [ [ vwin (upt) (17)

%

Each parameter posterior ¢(6;;) is the product of the
prior and messages py;;(6;;) from factors h,;, n = 1..N:
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We denote by ¢\'(x) the approximate posterior of a
variable x after removing the message indexed by 3.

2.1 Messages from h,; to G;

The posterior ¢(G; = k) over each structure variable is
the product of the prior and the messages v,,;(G; = k),
n = 1..N from factors h,;:
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2.2 Messages from h,; to U

The posterior of each latent variable g(u}) is the prod-
uct of the prior and the messages vp;x(uj) from factors
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When k' # k,
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2.3 Messages from h,; to 0;;

Each parameter posterior distribution ¢(6;;) is com-
puted as the product of the prior and the messages
Pnij(0i) from factors hyi(g;,u™,0;,z}"), n = 1..N:
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The message ppi;(6;;) is a weighted average of Dirich-
let messages, projected onto a Dirichlet distribution
with matching moments. The terms s,,;x(6;;) are EP
messages in a discrete mixture model where Uy, is the
parent of X;. Each s,;;x(6;;) is a moment-matched
weighted average two Dirichlet distributions, for the
two cases where U]l = j and U]} # j:
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