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Abstract

Non-convex regularizers are more and more
applied to high-dimensional inference with s-
parsity prior knowledge. In general, the non-
convex regularizer is superior to the convex
ones in inference but it suffers the difficul-
ties brought by local optimums and massive
computation. A ”good” regularizer should
perform well in both inference and optimiza-
tion. In this paper, we prove that some
non-convex regularizers can be such ”good”
regularizers. They are a family of sparsity-
yielding penalties with proper Lipschitz sub-
gradients. These regularizers keep the su-
periority of non-convex regularizers in infer-
ence. Their estimation conditions based on s-
parse eigenvalues are weaker than the convex
regularizers. Meanwhile, if properly tuned,
they behave like convex regularizers since s-
tandard proximal methods guarantee to give
stationary solutions. These stationary solu-
tions, if sparse enough, are identical to the
global solutions. If the solution sequence pro-
vided by proximal methods is along a sparse
path, the convergence rate to the global op-
timum is on the order of 1/k where k is the
number of iterations.

1 INTRODUCTION

High-dimensional inference concerns the parameter es-
timation problems in which the dimensions of parame-
ters are comparable to or larger than the sampling size.
In general, high-dimensional inference is ill-posed and
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it needs additional prior knowledge about the struc-
ture of the parameters to obtain consistent estima-
tions. In recent years, tremendous research works have
demonstrated that the prior knowledge of sparsity can
lead to good estimators, e.g., the well-known work
of Compressed Sensing (see Candes and Plan, 2011,
and reference therein) and its extension to general M-
estimators (Negahban et al., 2009).

In methodology, sparsity is usually imposed as
a sparsity-yielding (or sparsity-encouraging (Candès
et al., 2008), sparsity-inducing (Bach, 2010)) regulariz-
ers for M-estimators. Many regularizers have been pro-
posed to describe the prior of sparsity, e.g., `0-norm,
`1-norm, `q-norm with 0 < q < 1, Smoothly Clipped
Absolute Deviation (SCAD) penalty (Fan and Li,
2001), Log-Sum Penalty (LSP) (Candès et al., 2008),
Minimax Concave Penalty (MCP) (Zhang, 2010a).
Note that these sparsity-yielding regularizers are non-
convex except `1-norm.

Non-convex regularizers usually need less samples
or, rather, weaker estimation conditions for high-
dimensional inference than convex ones (Candès et al.,
2008; Foucart and Lai, 2009; Davies and Gribonval,
2009; Saab and Yilmaz, 2010; Sun, 2012). Howev-
er, their non-convexity makes the corresponding M-
estimators difficult to solve. It can not be guaran-
teed to achieve a global optimum for arbitrary non-
convex regularizer. Even worse, it is strongly NP-hard
for `p-regularized M-estimators with `2 loss functions
(Chen et al., 2011). Without any additional condition,
the methods based on gradient descent or Iterative
Reweighted `1 (IRL1) methods (Candès et al., 2008;
Foucart and Lai, 2009; Zhang, 2010b) only lead to lo-
cal optimums. Zhang (2010b) analyzed the inference
performance of IRL1, but the analysis needs the same
estimation condition as `1-norm. Besides, IRL1 suffers
the same RIP based failure bound as `1-norm for in-
ference (Davies and Gribonval, 2009) and the compu-
tational burden is heavy since it needs to solve several
`1-regularized problems. For MCP, Zhang (2010a) pro-
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posed the sparse Riesz condition for his path following
algorithm, but this condition is also strong enough for
the consistency of parameter estimation by LASSO.

In this paper, we consider what regularizers are able
to hold good performance in both inference and op-
timization. We propose a family of sparsity-yielding
non-convex regularizers with Lipschitz subgradients,
named Lipschitz Sparsity-Yielding (LSY) regularizers.
We prove that LSY regularizers hold good properties
in both inference and optimization. Specifically, we
make the following contributions:

• We provide estimation conditions for LSY regular-
izers under the frameworks of Sparse Eigenvalue
(Section 3). The proposed estimation conditions
are weaker than that of `1-norm, which implies
that LSY regularizers need less samples or has
higher probabilities for consistent parameter esti-
mation than the convex regularizers. With the es-
timation conditions, we establish an upper bound
of the estimation errors, as well as an estimation
to the sparseness of the global solutions.

• With properly tuned LSY regularizers, we op-
timize the corresponding M-estimator by Proxi-
mal Methods (Nesterov, 2007; Beck and Teboulle,
2009, 2010) and it guarantees to achieve station-
ary solutions. These stationary solutions are i-
dentical to the global solutions if they are enough
sparse. Furthermore, the convergence rate will be
sublinear∗ provided that the solutions of all iter-
ations are along a sparse path.

• We give a simple method to tune the parameter-
s of LSY regularizers (Section 6). The method
prevents the troubles in parameter selection for
non-convex regularized M-estimators. Our exper-
iments show the effectiveness of the parameter s-
election method on synthetic data.

• Our LSY regularizers cover many existing non-
convex regularizers, e.g., SCAD (Fan and Li,
2001), LSP (Candès et al., 2008; Trzasko and
Manduca, 2009), MCP (Zhang, 2010a) and Ge-
man Penalty (GP) (Trzasko and Manduca, 2009;
Geman and Yang, 1995) (Section 2). The good
properties in inference and optimization proposed
in this paper give a theoretical explanation for the
outperformance of these non-convex regularizers
in the previous works.

∗For a function F(θ) with the minimal function value F̂
and a sequence {θk}, if F (θk)−F̂ ≤ C/k for some constant
C > 0, we say the convergence rate is sublinear.

2 LSY PENALTY

In this paper, we focus on the component-
decomposable regularizers, i.e., the regularizer r(u)
can be written as r(u) =

∑n
i=1R(|ui|), where R(·) is

called the basis functions. The basis function of LSY
penalty, named CLIF, is defined in Definition 1.

Definition 1 (CLIF) The function R : [0,+∞) 7→
[0,+∞) is called a Concave Lipschitz Increasing Func-
tion (CLIF) if it holds the following three properties:

1. Concave over [0,+∞) and R(u) = 0⇔ u = 0;

2. Increasing (or non-decreasing) over (0,+∞);

3. Lipschitz continuity: differentiable over [0,+∞)
and there exists νR > 0 such that for any u1, u2 ∈
(0,+∞), |R′(u1) − R′(u2)| ≤ νR|u1 − u2|, where
R′(·) is the derivative of R(·). νR is called the
Lipschitz constant of R′(·).

Definition 2 (LSY penalty) Let R(·) be any CLIF.
For any u = (u1, · · · , un) ∈ Rn, we define the Lipschitz
Sparsity-Yielding (LSY) penalty derived from R(·) as
r(u) =

∑n
i=1R(|ui|).

Some special cases of LSY penalties have been widely
used in sparsity related works, e.g., the penalties in
Table 1. All of the basis functions in Table 1, except
`1-norm, can be written as

R(u) = λ2R0(u/λ; γ), (1)

where the parameter γ determines the Lipschitz con-
stants and controls the ”degrees” of non-convexity and
approximation to `0-norm. Formally, we have

lim
γ→0+

rγ(θ)

Rγ(1)
= ‖θ‖0, lim

γ→+∞

rγ(θ)

Rγ(1)
= ‖θ‖1. (2)

for any θ ∈ Rn. In addition, it should be noted that
`p-norm with 0 ≤ p < 1 is not an LSY penalty, since
we can not find a finite Lipschitz constant to ensure
its Lipschitz continuity.

3 INFERENCE

Suppose we have m samples

(y1, a1), (y2, a2), · · · , (ym, am),

where yi ∈ R and ai ∈ Rn for i = 1, · · · ,m. Let
X = (a1, · · · , am)T and y = (y1, · · · , ym). We assume
that there exists an underlying s-sparse parameter θ∗

which is supported on S and satisfies

y = Xθ∗ + e
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Table 1: Examples of LSY penalties.

Penalty CLIF Lipschitz constant

`1-norm R(u) = λu νR > 0

SCAD R(u) = λ
∫ u
0

min

{
1,
(

1− x/λ−1
γ

)
+

}
dx νR = 1/(2γ)

MCP R(u) = λ
∫ u
0

(
1− x

λγ

)
+
dx νR = 1/(2γ)

LSP R(u) = λ2 log
(

1 + u
λγ

)
νR = 1/γ2

GP R(u) = λ2u/(λγ + u) νR = 2/γ2

with a small noise e ∈ Rn. In this paper, we assume
that the noise satisfies

‖XT e/m‖∞ ≤ ε

for some ε ≥ 0.

We focus on using the following regularized regression
to recover θ∗ from y.

θ̂ = arg min
θ∈Rp

L(θ) + r(θ) (3)

where

L(θ) =
1

2m
‖y −Xθ‖22 (4)

is the prediction error and r(θ) is an LSY regularizer.

For the `2 loss in Eqn. (4), Sparse Eigenvalues (SE)
is a widely used framework for estimation conditions.

Definition 3 (Sparse Eigenvalue) For an integer
t ≥ 1, we say that κ−(t) and κ+(t) are the minimum
and maximum sparse eigenvalue(SE) of a matrix X if

κ−(t) ≤ ‖Xθ‖22/(m‖θ‖22) ≤ κ+(t)

holds for all θ with ‖θ‖0 ≤ t.

To discriminate zero and non-zero components, we as-
sume all the magnitudes of the non-zero components
of θ∗ and θ̂ are not less than ρ, i.e.,

ρ = min{ρ̂, ρ∗} ≥ 0,

where ρ̂ = min{|θ̂i| : i ∈ supp(θ̂)} and ρ∗ = min{|θ∗i | :
i ∈ supp(θ∗)}. We call ρ̂ and ρ∗ the zero gaps of θ̂ and
θ∗ respectively.

We observe that the solutions of Problem (3) are
bounded. Thus, there exists ρ∞ > 0 such that

max{‖θ̂‖∞, ‖θ∗‖∞} ≤ ρ∞.

Based on SE, we establish the following parameter es-
timation theorem.

Theorem 1 Suppose

R−1(u/s)

R−1(u/(t− 1))

is a non-decreasing function of u with t−1 ≥ s. If the
SE satisfies

κ+(2t)/κ−(2t) < 4(
√

2− 1)GR(ρ) + 1, (5)

for some integer t ≥ s+ 1 and

(2t− 1)
2ρ∞

R(2ρ∞)
ε ≤ 1,

we have
‖θ̂ − θ∗‖2 ≤ C1(R′(0) + ε), (6)

where C1 are positive constants independent of θ∗ and
ε and GR(ρ) is

GR(ρ) =

{ √
s
t

R−1(R(ρ)/s)
R−1(R(ρ)/(t−1)) , ρ > 0

(t− 1)/
√
st, ρ = 0.

(7)

It can be verified that the LSY penalties in Table 1

satisfy the non-decreasing property of R−1(u/s)
R−1(u/(t−1)) .

If the zero gap ρ = 0, i.e., we can not distinguish
the non-zero and zero component of the parameters,
the estimation condition in Eqn. 5 becomes the same
as the `1-norm case (Foucart and Lai, 2009). This is
because when the non-zero components of parameters
are scaled to be arbitrarily close to zero, the values
of the regularizers at the scaled parameters can be
approximated arbitrarily by a scaled `1-norm, which
means the non-convexity vanishes. Without zero gap,
the non-convex regularizers with finite gradients at ze-
ro will behave like an `1-norm for the parameters with
small magnitudes and can not have different perfor-
mance from `1-norm on sparse estimation in the mean-
ing of the worst cases.

However, with positive zero gap ρ > 0, much weaker
estimation conditions are available. For example, the
SE based estimation condition for LSP becomes

κ+(2t)

κ−(2t)
< 1 + 4(

√
2− 1)

√
s

t

(1 + ρ/γ)1/s − 1

(1 + ρ/γ)1/(t−1) − 1
.
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With t > s + 1, the upper bound for κ+(2t)/κ−(2t)
tends to infinity when γ/ρ→ 0. It means that if

κ−(2t) := inf
θ

{
‖Xθ‖22
n‖θ‖22

: ‖θ‖0 ≤ 2t

}
> 0, (8)

there exists γ > 0 so that the SE condition in E-
qn. (5) is satisfied for LSP. For `1-norm, the esti-
mation conditions need κ+(2t)/κ−(2t) to be upper
bounded by a fixed constant, e.g., κ+(2t)/κ−(2t) <
1 + 4(

√
2 − 1)(t/s)1/2 (Foucart and Lai, 2009) and

κ+(2t)/κ−(2t) < 4t/s − 1 (Zhang, 2010a; Zhang and
Huang, 2008). Hence, the proposed estimation con-
dition of LSP is much weaker than that of `1-norm.
Note that γ → 0 means that LSP tends to `0-norm
and κ−(2t) > 0 is the estimation condition for `0-norm
(Foucart and Lai, 2009), which implies that our esti-
mation conditions can be weakened ”continuously” to
that of `0-norm when LSP are more and more close to
`0-norm.

In addition to the error bound, we usually hope that
the M-estimators yield enough sparse solutions. Thus,
estimating the sparseness of the global solutions is al-
so an important problem. We extend the result from
Zhang and Zhang (2012) and show that the global so-
lutions of Problem (3) are sparse under appropriate
conditions.

Theorem 2 Suppose the conditions of Theorem 1
hold. Consider l0 > 0 and integer m0 > 0 such that√

2tκ+(m0)R(c2(R′(0) + ε))

m0
+

1

m
‖XT e‖∞ < R′(l0),

where c2 is a positive constant †. Then,

|supp(θ̂)\S| ≤ m0 +
tR(c2(R′(0) + ε))

R(l0)
,

Corollary 1 Suppose the basis function has the for-
mulation in Eqn. (1) and the conditions of Theorem 2
hold with t = 2s, m0 = β0s, l0 = β1λ and λ = ε/ζ for
some β0, β1 and ζ > 0. Let C3 = c2(R′0(0) + ζ) where
c2 is the same as Theorem 2. If

4κ+(β0s)

β0
<

(R′0(β1)− ζ)2

R0(C3)
, (9)

then

|supp(θ̂)\S| ≤ (β0 + 2R0(C3)/R0(β1))s. (10)

Theorem 2 implies that the global solution θ̂ is s-
parse under appropriate conditions. Corollary 1 fur-
ther shows that the sparseness of θ̂ can be O(s):

ŝ := |supp(θ̂)| ≤
(

1 + β0 +
2R0(C3)

R0(β1)

)
s. (11)

†c2 is defined in Eqn. (25) of the supplementary mate-
rial

It is important that the global solutions are sparse,
since it is one of the motivations of sparse learning.
The sparseness of global solutions is also important
for finding the global solutions, which will be stated in
the next section.

4 OPTIMIZATION METHOD

We provide optimization methods for Problem (3). In
this section, the loss function L(θ) is not restricted to
the `2 loss in Eqn. (4). We assume the loss function
L(θ) is convex and differentiable and its gradient is
Lipschitz with Lipschitz constant νL, i.e., for all θ, θ′ ∈
Rn,

‖∇L(θ)−∇L(θ′)‖22 ≤ νL‖θ − θ′‖22.

4.1 Proximal Methods

We use proximal methods to solve Problem (3).
For convex regularizers, proximal methods have been
proved to be efficient first order methods both theoret-
ically and empirically (Beck and Teboulle, 2009; Agar-
wal et al., 2011). To apply it to non-convex regular-
izers, we need to tackle the following problem, named
shrinkage function

τα(ω) = arg min
θ

{
αr(θ) +

1

2
‖θ − ω‖22

}
(12)

for ω ∈ Rn. Since the LSY penalty r(θ) is component-
decomposable, we can calculate each component of
τα(ω) separately. We can even obtain the closed so-
lutions of τα(ω) for the five LSY penalties in Table 1.
For `1-norm, the shrinkage function is the well known
soft-thresholding (Donoho, 1995)

τα(ω) = sign(ω) ·max{ω − α, 0},

where all the computation is component-wise. For L-
SP, the shrinkage function can be written as

τα(ω) =


1
2 sign(ω) · (|ω| − γ

+
√

(|ω|+ γ)2 − 4α
)
, |ω| ≥ λα/γ,

0, |ω| < λα/γ.

In general, τα(ω) shrinkages ω to 0 if |ω| ≤ αR′(0),
which we call shrinkage effect. Moreover, Problem (12)
is convex for suitable LSY penalties.

Theorem 3 For any ω ∈ Rn, Problem (12) is convex
under the condition that 2ανR ≤ 1.

The convexity of Problem (12) is useful when LSY
penalty is too complicated to give a closed or simple
solution for τα(ω). In this case, we can still obtain
τα(ω) fast by one-dimensional convex optimization.
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4.2 Global Optimality

We concern the convergence property of the standard
proximal methods ISTA (Beck and Teboulle, 2009).
ISTA is illustrated in Algorithm 1, where

pν̄(θk−1) = τ1/ν̄(θk−1 −∇L(θk−1)/ν̄),

and

DL(θ; θ′) = L(θ)− L(θ′)− 〈∇L(θ′), θ − θ′〉.

Algorithm 1 Iterative Shrinkage-Thresholding Algo-
rithm (ISTA)

Input: ν0 (> 0, > 2νR if needed) and η > 1. γ
and λ are selected according to (14).
Initialization: θ0 = arg minL(θ) +R′(0)‖θ‖1.
Step k (k ≥ 1):

Find the smallest integer ik ≥ 0 such that

D(pν̄(θk−1), θk−1) ≤ ν̄

2
‖pν̄(θk−1)− θk−1‖22 (13)

with ν̄ = ηikνk−1.
Set νk = ηikνk−1 and compute

θk = τ1/νk

(
θk−1 −

1

νk
∇L(θk−1)

)
.

The parameter ν0 can be tuned to ensure the convexity
of Problem (12) if needed, i.e., ν0 ≥ 2νR. The param-
eters of LSY penalty γ and regularization factor λ can
be selected simply by the parameter selection method
in Section 5. Sparse initialization usually accelerates
the algorithm, hence we use the solution of

min
θ
L(θ) +R′(0)‖θ‖1

as θ0, which can be solved efficiently by standard
solvers for convex regularized problems, e.g., FISTA
(Beck and Teboulle, 2009). The computation com-
plexity of νk and the shrinkage functions are similar
to `1-regularized ISTA.

Before analyzing the convergence performance of LSY
regularized ISTA, we first define the concept of ap-
proximate stationary solutions.

Definition 4 Give ϕ ≥ 0, we say that θ̃ is a ϕ-
approximate stationary (ϕ-AS) solution of F(θ) if the
directional derivative of F at θ̃ in any direction d ∈ Rn
is no less than −ϕ, i.e.,

F ′(θ; d) ≥ −ϕ.

Lemma 1 {F(θk)} is a decreasing sequence and con-
verges; For any ϕ > 0, {θk} gives a ϕ-AS solution of
Problem (3) within finite steps.

Considering the prior of sparsity, if the loss function
is restricted to operate on sparse vectors, it behaves
like a strongly convex function, e.g., the works on com-
pressed sensing with RIP conditions (Candès and Tao,
2005; Candes and Plan, 2011) and the general loss with
RSC conditions (Negahban et al., 2009). With a posi-
tive minimum SE, the `2 loss in Eqn. (4) also behaves
like a strongly convex function. Hence, we propose
SSC conditions which extend SE to general loss func-
tions.

Definition 5 (SSC) We say L(θ) holds the property
of (s, s′)-Sparse Strong Convexity (SSC) if there exists
a constant κ−(s, s′) > 0 such that

L(aθ + (1− a)θ′)

≤aL(θ) + (1− a)L(θ′)− a(1− a)κ−(s, s′)‖θ − θ′‖22

holds for any a ∈ (0, 1), any s-sparse vector θ and any
s′-sparse vector θ′.

For the case of L(θ) = 1
2m‖y − Xθ‖

2
2 , SSC becomes

the same as the minimum SE, i.e.,

2κ−(s, s′) = κ−(s+ s′).

The more sparse θ and θ′ are, the more probably SSC
holds.

Theorem 4 Suppose θ̃ is ϕ-AS and q-sparse.

1. F(θ̃) ≤ F(θ∗) + ϕ if νR ≤ κ−(q, s);

2. F(θ̃) ≤ F(θ̂) + ϕ if νR ≤ κ−(q, ŝ), where ŝ =

supp(θ̂).

With Lemma 1, the ϕ-AS solutions required in Theo-
rem 4 can be obtained by ISTA. Theorem 4.1 implies
that the stationary solutions (ϕ = 0) achieve better
function values of F(θ) than θ∗, which is enough to let
Theorem 1 be applicable for these stationary solutions,
i.e., under the conditions of Theorem 1, the parameter
estimation by these stationary solutions also hold the
error bound in Eqn. (6).

Theorem 2 and Corollary 1 show the global solution-
s are sparse under appropriate conditions. With the
guarantees of sparse global solutions, the sparse sta-
tionary solutions are also global solutions by Theorem
4.2.

Theorem 4 analyzes the the performance of a single
sparse solution on approximating the global optimum
F(θ̂). We also concern the performance of a sparse
solution sequence {θk}∞k=0 given by ISTA.

Theorem 5 Suppose {θk}∞k=0 is generated by ISTA.
Let qk0,k = max{‖θi‖0, k0 ≤ i ≤ k} for any positive



     486

High-dimensional Inference via Lipschitz Sparsity-Yielding Regularizers

integers k0 and k with k > k0. Let ŝ = supp(θ̂). If
κ−(qk0,k, ŝ) > 0 and νR ≤ κ−(qk0,k, ŝ), we have

‖θk+1 − θ̂‖2 ≤ ‖θk − θ̂‖2

and

F(θk)−F(θ̂) ≤ (ηνL − 2νR)‖θ̂ − θk0‖22
2(k − k0)

for any k > k0.

Theorem 5 requires the solution sequence {θj}kj=k0 is
along a sparse path, i.e., every solution in the sequence
is sparse. Along a sparse path, the solution sequence
holds a sublinear convergence rate to the global opti-
mums.

In practice, the shrinkage effect of ISTA usually drives
θk to become sparse rapidly and keep sparse stably,
especially for non-convex regularizers which are close
to `0-norm. The experiments in Section 5 also demon-
strate that empirically. With this experience as an as-
sumption, Theorem 5 shows that the convergence rate
of ISTA with non-convex regularizers are the same as
the rate with convex regularizers (Beck and Teboulle,
2009), which explains the efficiency of non-convex reg-
ularized ISTA in many practical experience.

5 EXPERIMENT

In this section, we provide some brief experiments to
confirm the proposed theory. More complicated ex-
periments and applications of LSY regularizers have
been demonstrated in some previous work, e.g., Can-
dès et al. (2008); Fan and Li (2001); Trzasko and Man-
duca (2009); Zhang (2010a). The model is introduced
in Section 3, where θ∗ is s-sparse and the designed
matrix X has i.i.d. elements drawn from N(0, 1).
The dimensions of the model are set as n = 10, 000,
s = log3 n and m = βs log n where β > 0 is varied to
control the sampling size. The observation noise e is
drawn from N(0, σ2I) and it follows that

1

m
‖XT e‖∞ ≤ ε = 2σ

√
log n

m

with high probability. The original sparse vectors are
generated with random ±1 for non-zero components.

5.1 Parameter Selection Method

The conditions of Theorem 1, 4 and 5 put a constraint
on the choice of the parameters λ and γ:

κ−
2νR

≥ 1 ≥ (2t− 1)
2ρ∞

R(2ρ∞)
ε, (14)

where κ− = κ−(q + s), κ−(q + ŝ) or κ−(qk0,k + ŝ).
Hence, we use it to select the parameters of LSY reg-
ularizers.

In the following experiments, we consider three LSY
penalties: MCP, GP and LSP. Their Lipschitz con-
stants are listed in Table 1. We set ρ∞ = 1, t = s+ 1
and κ− = 0.5 in our experiment‡. Hence, we use

1

4νR
= 1 =

4(2s+ 1)σ

λ2R0(2/λ; γ)

√
log n

m

to select λ and γ. If the noise is close to zero, λ
can be small enough to give a good approximation to
`0-norm§. Hence, our parameter selection method is
particularly suitable for the cases with low noise level
(σm = σ/

√
m = 10−6 in our experiment) and small

sampling size (small β).

5.2 Optimization

The sublinear convergence in Theorem 5 assumes that
the sequence {θk} becomes sparse rapidly and ‖θk‖0
keeps small stably. Figure 1 illustrates the decrease of
of non-zero numbers and function values. In Figure 1,
the non-zero numbers may increase at first iteration,
but after 4 ∼ 5 iterations, the sparsity becomes the
same as that of the original vector (log3 n) and the
function values converge to be almost the same. The
even columns show the corresponding results of IRL1
methods, which usually need 2 iterations for the con-
vergence of sparsity and function value. It should be
noted that an iteration of ISTA only means a shrink-
age function while an iteration of IRL1 means a solver
for `1-regularized problems, e.g., FISTA. Hence, ISTA
is more efficient for LSY regularizers than IRL1.

5.3 High-dimensional Inference

We compare the performance of sparsity inference be-
tween the three LSY regularizers and popular sparse
regularizers (`1, `0, `p with p = 0.1, 0.2, 0.5). We min-
imize `1, `0 and `p-regularized problems with FISTA
(λ = 0.03) (Beck and Teboulle, 2009), OMP (Tropp
and Gilbert, 2007) and IRL1 (λ = µφ1−p/p‖XT y‖∞
where µ = 0.1, φ = 0.01) ¶ methods respectively.

First, we concern the problems of support recovery,
i.e., whether the recovered vector θ̂ has the same sup-
port as θ∗. Denote T and S as the supports of θ̂ and

‡For Gaussian matrix, κ− = 0.5 holds with high proba-
bility when θ and θ′ in Definition 5 are sparse.
§MCP, GP and LSY tend to `0-norm also when λ→ 0.
¶IRL1 uses (|θ|+φ)p to approximate `p-norm with small

φ. As far as we know, there is still no widely accepted rule
to choose λ for `p-regularized problems. We varied µ and
find µ = 0.1 has a good balance between avoiding zero
solution and yielding enough sparse solutions.
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Figure 1: Boxplots of the sparsity (top) and objective function (bottom) for MC (a)(b), Geman (c)(d) and LSP
(e)(f). The columns of (a)(c)(e) and (b)(d)(f) are for ISTA and IRL1 respectively. We set β = 0.5 and run 100
trials for each regularizer.

θ∗. We use Support Recovery Ratio (SRR)

r = |S ∩ T |/|S ∪ T |

to indicate the performance of support recovery. The
supports of θ̂ and θ∗ are the same iif SRR r = 1.

We run 100 trials for each regularizer and each sam-
pling size. Figure 2(a) illustrates the frequencies of
successful support recovery (SRR r = 1). MCP, GP
and LSP have almost the same SRR as `0.5, `0.2 and
`0.1 respectively for small sampling sizes (β ≤ 0.4).
Note that all the three LSY regularizers can stabilize
SRRs at 1 when β ≥ 0.41. However, the SRRs of
`0.5-regularizer, minimized by IRL1, can not give ex-
act support recovery stably, since the solutions given
by IRL1 methods usually have small noise for some
components that should have been zero.

In Figure 2(b), we compare the average Relative Re-
covery Error (RRE)

RRE = ‖θ̂ − θ∗‖2/‖θ∗‖2

for different regularizers and different sampling sizes.
The three LSY regularizers can reduce RRE to a low
level (< 5%) with similar sampling sizes to the three
`p-norms. However, the LSY regularizers can give s-
maller RREs than `p-norms.

The smaller RREs, as well as more stable SRRs, show
that LSY regularizers are more robust to noise than
`p-norms.

6 CONCLUSION

We have presented the theoretical analysis for LSY
regularizers in high-dimensional inference with the pri-
or knowledge of sparsity. The proposed SE based esti-
mation conditions are weaker than that of convex reg-

ularizers. Proximal methods provide stationary solu-
tions of LSY regularized regression, which are identical
to the global optimums with sparseness assumptions.
With the parameter selection method in Section 6, we
can avoid the exhausted search for good parameters.
The experiments on synthetic examples demonstrate a
numerical confirmation for the outperformance of LSY
regularizers in optimization and inference.

This paper provides a general theory to non-convex
high-dimensional inference with sparsity priors and
can serve as a guideline for selecting regularizers and
developing algorithms for non-convex regularized re-
gression.
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