
Supplementary Material for AISTATS13 Submission #140
A Parallel, Block Greedy Method for Sparse Inverse Covariance Estimation for Ultra-high Dimensions

Prabhanjan Kambadur Aurélie Lozano

IBM T.J. Watson Research Center
pkambadu@us.ibm.com

IBM T.J. Watson Research Center
aclozano@us.ibm.com

1 Forward Evaluator

Algorithm 1: ForwardEvaluator

Input: S: Sample covariance, Σ: Covariance, W : Inverse
covariance, L: likelihood, bs: Block size.

Output: M : selected candidates
1 M = MAP (L → (row, col, α), bs);
2 for i = 1 : p do
3 for j = (i+ 1) : p do
4 if (i, j, ∗) ∈ W then continue;
5 αij =ComputeAlpha(S,Σ, (i, j));
6 if αij == ∞ then continue;

7 Lij = L+log ((1 + αijσij)
2 − α2

ijσiiσjj)− 2αijsij ;
8 if (Full(M) && (Lij ≥MaxKey(M)) then

continue;
9 M = (Full(M))?(M \M [MaxKey(M)]) : M ;

10 M = M
⋃

(Lij → (i, j, αij));

11 return M ;

In the forward phase, GreedyInverseCovariance()
selects the top bs candidates by calling
ForwardEvaluator() (Algorithm 1). Briefly, this
algorithm checks each of the (as yet unselected)
positions in the upper (or lower) triangular matrix of
W and returns a map of the top bs candidates. For
each candidate, αij is computed and subsequently,
the likelihood when αij(eij + eji) is added to W is
computed.

2 Backward Evaluator

To enhance the accuracy of our method, we execute a
backward step at the end of each iteration; the goal of
BackwardEvaluator() (Algorithm 2) is to remove those
(i, j)’s, which contribute the least to L. Briefly, this
algorithm checks each of the selected positions in W
and returns a map of the bottom bs candidates. For
each candidate, we evaluate L in the absence of the
candidate, which is the same as adding a new candi-
date (i, j,−αij) to W .

Algorithm 2: BackwardEvaluator

Input: S: Sample covariance, Σ: Covariance, W : Inverse
covariance, L: likelihood, bs: Block size.

Output: M : selected candidates
1 M = MAP (L → (row, col, α), bs);
2 for i = 1 : p do
3 for j = (i+ 1) : p do
4 if (i, j, αij) /∈ W then continue;
5 γij = −αij ;

6 Lij = L+ log ((1 + γijσij)
2 − γ2

ijσiiσjj)− 2γijsij ;
7 if (Full(M) && (Lij ≤MinKey(M)) then

continue;
8 M = (Full(M))?(M \M [MinKey(M)]) : M ;
9 M = M

⋃

(Lij → (i, j, γij));

10 return M ;

Algorithm 3: Update

Input: M : A map of selected candidates, Sp,p: Sample
covariance, Σp,p: Covariance, W : Inverse
covariance, L: likelihood

Output: (W,Σ, L)new: Updated values
1 while M 6= ∅ do
2 (i, j, α) = RemoveMaxKey(M);

3 L = L+ log ((1 + αijσij)
2 − α2

ijσiiσjj)− 2αijsij ;
4 W = W + α(eij + eji);
5 Σ =

Σ− α(1+αijσij)(ΣiΣ
T
j +ΣjΣ

T
i)+α2(σjjΣiΣ

T
i +σiiΣjΣ

T
j)

(1+αijσij)2−α2
ij

σiiσjj
;

6 return (W,Σ, L)

Running heading title breaks the line

3 Updating state

Once the candidates are selected, the next step is to
update L, W and Σ to reflect the addition/deletion of
the new candidates by calling Update() (Algorithm 3).
Briefly, for each new candidate that we will add/re-
move, we update the likelihood, add α(eij+eji) to W ,
and update Σ ro reflect addition to W . Note that W
is stored as (i, j, v) values and that candidates can be
added in parallel.

4 Refit

Algorithm 4: Refit

Input: W : Inverse covariance, Σ: Covariance, L:
likelihood, S: Sample covariance, ǫ: tolerance.

Output: (W,Σ, L)new: refitted variables.
1 while true do
2 for i = 1 : p do
3 for j = (i+ 1) : p do
4 if (i, j, ∗) /∈ W then continue;
5 αij =ComputeAlpha(S,Σ, (i, j));
6 if αij == ∞ then continue;
7 Lij =

L+ log ((1 + αijσij)
2 − α2

ijσiiσjj)− 2αijsij ;
8 if Lij − L < ǫ then return (W,Σ, L);
9 L = Lij ; Wij = Wij + αij ; Wji = Wij ;

10 Σ = Σ−
α(1+αijσij)(ΣiΣ

T
j +ΣjΣ

T
i)+α2(σjjΣiΣ

T
i +σiiΣjΣ

T
j)

(1+αijσij)2−α2
ij

σiiσjj
;

After updating the required values, we re-estimate the
value of the model parameters (W,Σ, L) to propogate
the selection/removal of the current set of candidates
using Refit () (Algorithm 4). Refitting is done using
coordinate descent by iteratively re-estimating one po-
sition ofW in each iteration; the procedure stops when
the change in L is smaller than ǫr, the tolerance for re-
fitting. Note that we only need to refit those entries in
W , which share a common row or column with any of
the chosen candidates, which is an optimization that
is not shown in Algorithm 4.

5 Proof of Theorem 1

We consider a variant of GINCO, where the foward
step breaks if δf = sup(i,j)∈M L − (L + αi,jei,j) <
ǫf , where L is the log likelihood loss upon enter-
ing ForwardEvaluator() and M are the candidates se-
lected by ForwardEvaluator(), and the backward step
breaks if δb = inf(i,j)∈M (L − αi,jei,j) − L > ǫbδf ,
where L is the log likelihood loss upon entering
BackwardEvaluator() and M are the candidates se-
lected by BackwardEvaluator(), and consider ǫb = 1/2
for simplicity.

We adapt the reasoning in [1] so as to account for
blocking. First, regardless of the block size, Lemma
1-3 in [2] insure that the strong convexity and strong
smoothness assumptions required by [1] are satisfied.
The proof then relies on the following lemmas, which
are adapted from [1]. Denote by κu = l and κu the re-
stricted strong convexity and restricted strong smooth-
ness parameters, respectively. These will be special-
ized in the theorem, using the assumptions on the re-
stricted eigenvalues property. Let ρ = κu/κl.

Lemma 1 (Stopping Forward Step) Let W ∗ and S∗

denote the population inverse covariance matrix and
its support, respectively. When GINCO stops with es-
timated inverse covariance Ŵ , supported on Ŝ, there
holds

∣

∣

∣L(Ŵ)− L(Ŵ ∗)
∣

∣

∣ <

√

2|S∗ − Ŝ|κuǫS‖Ŵ − Ŵ ∗‖2.

Proof The proof for Lemma 1 follows from the ex-
act same arguments as that of Lemma 5 in [1], not-
ing that the breaking condition for GINCO’s for-
ward step implies that when the algorithm terminates
L(Ŵ)− inf(i,j)∈Ŝc,α L(Ŵ + αei,j) < ǫf . �

Lemma 2 (Stopping Error Bound) Let W ∗ and S∗

denote the population inverse covariance matrix and
its support, respectively. When GINCO stops with es-
timated inverse covariance Ŵ , supported on Ŝ, there
holds

‖Ŵ − Ŵ ∗‖2 ≤ 2

κl

(

c

√

log(p)

n

√

|S∗ ∪ Ŝ|

+

√

2|S∗ ∪ Ŝ|ρ2C2
minǫf

)

.

Proof The proof follows by the same reasoning as for
Lemma 6 in [1] and by noting that Lemma 3 in [2]
implies that the l∞ norm of the gradient of the loss
at the true inverse covariance is upper-bounded by λn

where λn ≤ c
√

log(p)
n

. �

Lemma 3 (Stopping Backward Step) Let W ∗ and S∗

denote the population inverse covariance matrix and
its support, respectively. When GINCO stops with es-
timated inverse covariance Ŵ , supported on Ŝ, there
holds

‖∆̂
Ŝ−S∗

‖22 ≥ ǫf
κu

|S∗ − Ŝ|.

Proof The proof follows the same arguments as that of
Lemma 7 in [1], noting that when GINCO terminates,
the backward step with the current Ŵ has failed to go
through, and hence there holds

inf
(i,j)∈Ŝ

L(Ŵ − α̂i,jei,j)− L(Ŵ) > ǫf ǫb,

Prabhanjan Kambadur, Aurélie Lozano

where ǫb = 1/2. �

Consider the first time the support size reaches kb
at the beginning of the forward step. Let ∆(k) =

Ŵ
(k)

Ŝ(k−1)
− ˆ̄W (k−1). Following a similar reasoning as

in the proof of Lemma 9 in [1], we can show that

‖∆(k)‖2 ≤ 2κu

κ2
l

√

(κu − κl)bδ
(k)
f , where b is the block

size, and we obtain the following lemma.

Lemma 4 (General Backward Step) The first time
GINCO reaches a support size of kb > |S∗| +
4(κu/κl)

4b+ 1 at the begining of the forward step we
have

‖Ŵ (k−1)

Ŝ(k−1)−S∗
‖22 ≥





√

|Ŝ(k−1) − S∗|
κu

−2κu

√

(κu − κl)b

κ2
l

)2

δ
(k)
f .

The following lemma follows from Lemma 11 in [1].
Lemma 5 (General Error Bound) The first time
GINCO reaches a support size of kb at the begining
of the forward step we have

‖Ŵ (k−1)

Ŝ(k−1)−S∗
‖22 ≤

4κu|S∗ ∪ Ŝ(k−1)|δ(k)f

κ2
l

(

c
√

log(p)/n
√
κuǫf

+

√

2|Ŝ(k−1) − S∗|
|S∗ ∪ Ŝ(k−1)|

)2

.

This allows us to obtain the last key lemma.

Lemma 6 (Stopping Size) If

ǫf >

(

c
√

log(p)
n

)2

κu





1
2ρ

√
γ −

√

(ρ2−ρ)b
s∗√

1 + γ
−
√

2

2 + γ





−2

with γ ≥ 4ρ2
(

√

(ρ2−ρ)b
s∗

+
√
2

)2

, then the algorithm

stops with kb ≤ (1 + γ)s∗ + 1, where s∗ is the support
size of the true inverse covariance.

Proof Let kb = (1+ γ)s∗, where s∗ is the support size
of the true inverse covariance. Following the reasoning
of the proof of Lemma 8 in [1], and applying Lemma
4 and 5 above, we get

1
2ρ

√
γ −

√

(ρ2−ρ)b
s∗√

1 + γ
−
√

2

2 + γ
≤ c

√

log(p)/n
√
κuǫf

.

�

Then similarly as in Lemma 4 in [1] we can consider

ǫf > c2 log(p)/(nκu)
(√

2
1+γ

−
√

2
2+γ

)−2

.

Theorem 1 then follows by combining Lemmas 1,2,3,6,
using the same arguments as in the proof of Theorem
1 in [1]. �

References

[1] Ali Jalali, Christopher C. Johnson, and Pradeep D.
Ravikumar. On learning discrete graphical models
using greedy methods. Advances in Neural Infor-
mation Processing Systems (NIPS) and extended
arxiv version, 2011.

[2] Christopher C. Johnson, Ali Jalali, and Pradeep D.
Ravikumar. High-dimensional sparse inverse co-
variance estimation using greedy methods. Journal
of Machine Learning Research - Proceedings Track,
22:574–582, 2012.

