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In their paper, Recht and Ré have presented conjectures and consequences of non-
commutative variants of the arithmetic mean-geometric mean (AM-GM) inequality for pos-
itive definite matrices. Let Aq,..., A, be a collection of positive semidefinite matrices and
i1,...,1; be random indices in {1,...,n}. To avoid symmetrization issues that arise since
matrix products are non-commutative, Recht and Ré define the expectation operators
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Let ||-|| denote the operator norm of a matrix. The authors’ main conjecture in the paper

is that for any k& < n, the following arithmetic-geometric mean inequality holds:
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Even formalizing appropriate non-commutative variants of AM-GM-type inequalities is dif-

ficult (e.g. Bhatia, 2007, Chapter 6), so the suggestion of useful inequalities is important.
A more general question that naturally asserts itself is for which (scalar or matrix-valued)

functions f can one obtain inequalities of the form (1), that is, identifying situations when
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As a natural starting point, taking f to be the norm of its arguments’ products,

f:Rmme-”XRmxm—)RJ,_, (Al,,Ak)Hf(Al,,Ak):mAlAQAkm, (3)

we obtain a slightly different form of of the initial conjecture (1). To provide motivation
for studying such alternate inequalities, I provide two examples for which the setting (3)
appears more natural than the proposed AM-GM inequality (1).
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I begin with one of Recht and Ré’s examples, the Kaczmarz algorithm. The algorithm
is an iterative algorithm for solving the linear system ®x = y, where ® € R™*? with n > d
and there exists an z, such that ®x, = y. Let gbiT denote the ith row of the matrix ®. In
its kth iteration, the Kaczmarz algorithm selects an index 45 € [n] and iterates
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Defining A; =1 — d)l-gbiT/ ||¢Z||§, it is not difficult to see that since (b;—a:* =y,
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The Kaczmarz algorithm’s convergence rate is then given by taking the function f to be
(Ao, Ag) = A As - Aylwo — 2.) |y < DAL As -+ Al 2o — .,

in the conjecture (2). This is distinct from the norm inequality (1) conjectured by the
authors, and it will require different analysis than that the authors present using random
vectors in the incremental gradient method. The distinction in the setting here is that ®
is fixed—so we must condition on it (i.e. on the matrices A4;)—and we wish to understand
the relative convergence rates when only the indices ¢ are random.

The second example, whose analysis may be somewhat easier, arises out of work on
distributed consensus and averaging algorithms. In consensus algorithms, a network of m
nodes, each node i € [m] owning a real-valued parameter z° € R, wish to compute the
average T = (1/m) Y %, 2 efficiently using local message-passing. Gossip algorithms (see,
e.g., Boyd et al., 2006) are robust, low-communication iterative schemes to achieve this
averaging and proceed as follows. Let z; € R™ denote the nodes’ parameters at iteration k
of the algorithm. The kth iteration consists of selecting a random pair (i, j) of connected
nodes in the network and averaging the values of the selected pair, while every other node
in the network does nothing. If we define the matrix A;; to be the identity, except that
entries (7,17), (4,7), (4,7), and (4,4) are equal to %, we see that zp, = Hle A, j,xo. Defining
1 € R™ to be the all-ones vector, we have A4; ;1 = 1 and (1/m)11 "z, = 7, and we can
measure the convergence of a gossip-style method by
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Boyd et al. (2006) give convergence rates of randomized gossip algorithms (edges are
sampled with replacement) that are optimal for certain types of networks, such as expander
graphs. However, for structured networks such as cycles and grids, Dimakis et al. (2008)
(and others following) demonstrate that directed and slightly less random communication
yields substantial improvements in convergence rate. Can we obtain similar improvements
by using sampling without replacement in gossip algorithms? Such improvements would
also yield improvements in distributed optimization algorithms based on local message
passing (e.g. Nedi¢ and Ozdaglar, 2009; Duchi et al., 2012). Given the special structure of
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Iterations k | k=2m | k=4m | k=10m | k = 20m
m =25 2.010 3.125 11.678 97.787

Ratio ||z} — z1|| / ||=™° — z1|| m = 100 1.337 1.408 1.901 2.965

m = 400 1.288 1.234 1.277 1.411

Table 1: With-replacement versus without-replacement sampling for gossip.

the matrices in the product (4) (they have two off-diagonal entries and are idempotent), it
may be easier to prove an inequality of the form (2) when we take f as in (4).

A simple simulation suggests—as Recht and Ré conjecture—that without replacement
sampling is better. Consider a toroidal grid network with m = {25,100,400} nodes (such
a network has 2m edges). Let x}© € R™ denote the node values in the network after &
iterations of without replacement gossip and z;* € R™ denote node values using with-
replacement sampling. We may study the relative convergence rates by computing the ratio
|z} — || / ||x}°® — Z1|| as a function of the number of iterations k and the network size m;
in the simulation I allow k to be larger than the number of edges by choosing a permutation
of all the edges in the network after each edge has been selected once. Table 1 shows the
mean of the ratios over 200 experiments for each of the different network sizes; the ratios
are always positive, suggesting the benefits of without replacement sampling.

Recht and Ré have opened an interesting avenue of research with their progress to-
ward noncommutative arithmetic-geometric mean inequalities. It will be interesting to see
whether quantitative versions of the inequalities (1) or (2) are true; I also look forward to
the new algorithmic and statistical insights such inequalities will provide.
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