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1. Introduction

This piece is a commentary on the paper by Hazan et al. (2012b). In their paper, they
introduce the class of (8, 7)-decomposable matrices, and show that well-known matrix reg-
ularizers and matrix classes (e.g. matrices with bounded trace norm) can be viewed as
special cases of their construction. The 8 and 7 terms can be related to the max norm and
to the trace norm, respectively, as explored in the paper, which we discuss in detail below.
The paper’s main contribution is a powerful online learning guarantee when learning inside
the (8, 7)-decomposable class, which scales with /3 - 7, and an efficient algorithm for solv-
ing this learning problem. Crucially, the paper reframes the well-known problems of online
max cut, learning a team ranking (“gambling”), and trace-norm regularized matrix com-
pletion (a.k.a. collaborative filtering) as special cases of learning inside (3, 7)-decomposable
classes of matrices. This yields new algorithms for the three existing problems, with each
algorithm giving a strong improvement over existing results in terms of either efficiency or
error rate guarantees. In addition, the paper derives lower bounds on the error rates for
each of the three problems that match (up to log factors) the upper bounds proved with
the new algorithm—and in particular, for collaborative filtering with the trace norm, their
lower bound solves an open problem posed by Shamir and Srebro in COLT 2011.

In this commentary, we explore the connections between the class of (5, 7)-decomposable
matrices, introduced by Hazan et al. (2012b), and the matrix trace norm (a.k.a. nuclear
norm) and max norm. Specifically, we are interested in the idea of a “trade-off” between the
B and 7 values for the class, and will consider how the resulting non-convex optimization
question can be formulated as a series of convex optimization problems.

2. Connection to max norm and trace norm

Hazan et al. (2012a) show that the max norm and trace norm of W relate to (f3,7)-
decomposability as follows (see their Appendix E):

W]l =2min{B : 37, W is (83, 7)-decomposable} and

max

1
W], = gmin {7 :3B, W is (B, 7)-decomposable} .

These two norms have often been used as regularizers for many problems, including the
three specific problems examined in Hazan et al. (2012b)’s paper. In general, for some loss
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function Loss(W) we would compute
W = arg min {[|[W]| : Loss(W) < ¢} ,

where ||[W/|| is either the max or trace norm, and c is some constraint on the loss. Choosing
either the max norm or the trace norm, we can think of this as special cases of regularizing
with (8, 7)-decomposability, where we place all emphasis on 5 or on 7, respectively. For
either norm, this is of course a convex optimization problem as long as the loss is convex.

Although the max norm and trace norm relate directly only to 8 or only to 7, respec-
tively, they can each be used to give a loose bound on the other parameter. This is discussed
in the decomposability lemmas of Hazan et al. (2012b) for the three specific problems, but
can be summarized in general as follows: for a matrix W € [—1, 1],

Wl ox <26 & Wis (8, (n + m)B)-decomposable , (1)
1
W], < o7 © W is (v/n + m, 7)-decomposable . (2)

For the three problems considered by Hazan et al. (2012b), the way that (3, 7)-decomposability
is used in each problem reduces to (1) in the cases of the online max-cut and online gambling
problems, and to (2) in the case of the online collaborative filtering problem.

In particular, since Hazan et al. (2012b)’s online learning guarantee scales with /3 - 7 for
the class of (3, 7)-decomposable matrices, we see that their results for the three applications
can be derived from the fact that, for any matrix W € [—1,1]"*™ this matrix is (3, 7)-
decomposable for some (8, 7) satisfying

1
VB -7 < min {2 W[, s VI + m, \/2 W], \/n—l—m} :

which we obtain simply by combining (1) and (2).

However, this bound might be very loose for other classes of matrices, and we are
interested in the possibility of more accurate learning by balancing information from both
B and 7, in a way that does not follow trivially from either a max norm bound or a trace
norm bound like in (1) and (2).

3. The (8, 7) trade-off

In light of Hazan et al. (2012b)’s work, it can be valuable to consider regularized opti-
mization problems that take both  and 7 into account. In particular, since Hazan et al.
(2012Db)’s learning guarantees are a function of /3 - 7, we might want to calculate the matrix

—~

W := arg min {\/6 -7 : Loss(W) < c and W is (3, T)—decomposable} , (3)

where Loss(W) is a convex loss function specified by the problem of interest. (For simplicity
in this discussion, we consider the batch learning setting rather than the online learning
setting.) Optimization with the regularizer /3 - 7, or more generally with any function that
combines information from both § and 7, may be computationally difficult. In particular,
we believe that the optimization problem (3) is not convex (although we do not have an
example). It is possible, though, to approach this question by considering a small number
of convex optimization problems, as we describe in the next section.
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4. The (5,7) Pareto-optimal frontier

Consider the set of (3, 7) pairs that can be obtained under a bound on the loss,
L=A{(B,7):3IW s.t. Loss(W) < ¢ and W is (3, 7)-decomposable} ,

and the Pareto-optimal frontier L,y of this set, i.e. the (8,7) pairs in £ where § and 7
cannot be simultaneously improved (lowered) inside of the set:

Loar ={(B,7)EL:VB 7L, B <B=>7>Tandr <7=p>p}.
We also consider the set of matrices Wy, that attain this Pareto-optimal frontier,
Wear = {W : Loss(W) < ¢, and W is (8, 7)-decomposable for some (3,7) € Lpar} -

It is clear that if we want to minimize /(-7 as in (3), or more generally any increasing
function of 8 and 7, subject to the constraint on loss, then our solution W must lie in the
set Whar-

This immediately suggests an approach to calculating W. To explain the intuition
informally, although /3 -7 is not a convex regularizer, 3 and 7T are each convex them-
selves. Therefore we can compute Wy, by constraining both the loss and the 8 value while
optimizing 7, and allowing the constraint on § to vary (or vice versa). To write this pre-
cisely, we use the SDP formulation given in Appendix E of Hazan et al. (2012a): W is
(8, 7)-decomposable if for some matrices A and B,

max {maxAii,maxBjj} < B, trace(A) + trace(B) < 7, and < V\éT ‘]g] > = 0.
i j

Using this formulation, we see that

Whar = U arg H‘lz‘i[n { trace(A) + trace(B) : Loss(W) < ¢,

b>0
A W
max {mngii,mjaxBjj} <, ( wT B > = 0} .

By taking a sufficiently fine grid of values of the bound b on 3, we can then get a reasonable
approximation of the set Wpar, and choose some approximation to W from this set.

5. An example of the Pareto-optimal frontier

We would now like to ask, how much is gained by considering the entire Pareto-optimal
frontier of solutions Wpa,, instead of simply considering the “endpoints”, that is, the solu-
tions we get by regularizing only the max norm (the ) or the trace norm (the 7) rather
than considering g and 7 simultaneously:

Wendpoints = arg min {||W/{| .. : Loss(W) < ¢} Uarg min {||W]|, : Loss(W) < ¢} C Wpar -

To help understand the role of the Pareto-optimal frontier, we compute this frontier for
a matrix completion problem, where for a partially-observed matrix Y, the loss is given by
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Figure 1: The Pareto-optimal frontier Lp,, for the (5, 7) trade-off for matrix reconstruction
with a low-rank, approximately low-rank, and full-rank signal (from left to right).

Z(i, ;) observed (Y — Wij)2. In Figure 1, we plot Ly, for three matrix completion problems,
each with a partially-observed matrix Y of size 20 x 20. These matrices consist of a signal
plus very low i.i.d. standard normal noise on each entry, with approximately half of the
entries observed, where the signal is given by either a rank-3 matrix, an approximately
low-rank matrix with singular values oc (1,1/2,1/3,1/4,...,), or a full-rank matrix with all
singular values equal. (In each case, the singular vectors are chosen randomly.)

We see that for the low-rank matrix, at each point on the frontier, either the g value is
very close to the lowest § value attained for any 7, or the 7 value is close to the lowest 7 value
obtained for any S—that is, the curve lies very close to a union of a horizontal segment and
a vertical segment. Intuitively, this suggests that the set W, might not be very different
from its subset Wendpoints- This tells us that we do not gain much by considering the
solutions along this entire frontier, relative to what we would get by considering only the
max norm regularized solution and the trace norm regularized solution. For the full-rank
matrix, this is not the case at all, while the curve for the approximately low-rank matrix
is somewhere between the two. Overall, for data that is not extremely close to low rank,
studying the (8, 7) trade-off may be much more informative than simply testing both of the
previously studied regularizers.
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