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1. Introduction

This commentary is about (Chiang et al., 2012b). This paper is the result of a merge
between two papers, (Yang et al., 2012) and (Chiang et al., 2012a). Both papers address
the same question: is it possible to obtain regret bounds in various online learning settings
that depend on some notion of variation in the costs, rather than the number of periods?
Both papers give remarkably similar algorithms for this problem, although the analysis
techniques are quite different, and obtain very similar results. While (Yang et al., 2012)
gives two algorithms obtaining such regret bounds for general online convex optimization
(OCO), (Chiang et al., 2012a) gives a unified framework to obtain such regret bounds for
three specific cases of OCO: online linear optimization, online learning with experts, and
online expconcave optimization.

2. Variation-bounded regret

The basic question of whether it is possible to obtain regret bounds that depend on variation
in cost functions was posed by Cesa-Bianchi et al. (2007). It was first solved by the author of
this commentary in collaboration with Elad Hazan in a series of papers: (Hazan and Kale,
2010) for online linear optimization and online learning with experts, (Hazan and Kale,
2011) for online linear optimization in the bandit setting, and (Hazan and Kale, 2012) for
online expconcave optimization. In these papers, the following notion of variation of cost
functions was considered. At time t, assume that the cost function can be parameterized
by a vector vt ∈ Rn, and assume for the sake of normalization that ‖vt‖ ≤ 1 (ths is the
usual Euclidean norm). Then, define the squared deviation variation of the cost functions
as

QSD =
T∑
t=1

‖vt − µ‖2,

where T is the number of rounds in the online learning problem, and µ = 1
T

∑T
t=1 vt is the

mean of the parameter vectors. It is easy to see that

QSD = O(T ).

We were able to show regret bounds that had the same dependence on QSD as that on
T in the best previously known regret bounds for all the scenarios mentioned above (i.e.
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O(
√
QSD) regret instead of O(

√
T ) for online linear optimization, O(logQSD) regret of

O(log T ) for online expconcave optimization, etc.). Clearly these bounds are tighter than
previously known bounds since in simple situations1 we can have QSD � T .

Another natural notion of variation of cost functions is squared change variation, defined
as

QSC =
T∑
t=2

‖vt − vt−1‖2.

It is easy to check that
QSC = O(QSD),

and so regret bounds in terms of QSC instead of QSD would be tighter. In fact, for simple
situations2 it is possible that QSC � QSD, thus leading to much tighter regret bounds.

When we gave talks on our work, a fairly common question asked was whether it was
possible to derive similar regret bounds in terms of QSC instead. It seemed hard to obtain
such regret bounds (various known algorithms could be shown to not achieve this kind of
regret guarantee). Thus it was of considerable interest if such regret bounds were possible.

The papers under consideration solve this important open problem. While the work of
Chiang et al. (2012a) improves the regret bounds in our work for online linear optimiza-
tion and online expconcave optimization by replacing the dependence on QSD by the same
dependence on QSC, the work of Yang et al. (2012) tackles the general OCO problem for
which no variation-bound on regret was known, primarily because of the lack of a suitable
parameter vector. Yang et al. (2012) define the squared change variation as follows:

QSC =

T∑
t=2

max
x∈K
‖∇ct(x)−∇ct−1(x)‖2,

where K is the convex, compact domain in the OCO problem, and ct : K → R is the cost
function at time t. Thus, variation is measured by the maximum change over points in the
domain in the gradients at that point between iterations. Yang et al. (2012) then show that
the regret can be bounded as O(

√
QSC), via two different algorithms.

3. Technical contributions

The main technical contribution, in my opinion, is the introduction of a new style of regret
minimizing algorithm based on mirror prox method (Nemirovski, 2004) and the related
mirror descent method (Beck and Teboulle, 2003). Interestingly, both papers rely on using
two Bregman projections (and two points in the domain) per round (rather than the usual
one). It seems crucial for the sake of analysis to have the intermediate step.

For the one setting that is common to the two papers, viz. online linear optimization,
the second algorithm of (Yang et al., 2012) is identical to the algorithm in (Chiang et al.,
2012a), although the analyses in the two papers seems superficially dissimilar.

1. E.g. if vt = u for all t, where u is a unit vector, then QSD = 0.
2. For example, consider the case when vt = u for t ≤ T/2 and vt = −u for t > T/2, where u is a unit

vector. Then QSC = O(1) whereas QSD = Θ(T ).
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4. Future work

The main remaining questions are the following:

• Is it possible to obtain Õ(
√
QSC) 3 regret for bandit online linear optimization, im-

proving on the Õ(
√
QSC) bound of Hazan and Kale (2012)? Yang et al. (2012) do get

such bounds for bandit settings where multi-point queries are allowed, but the pure
bandit case is still open.

• The bound of Chiang et al. (2012a) for online learning with experts is not directly
comparable to the bound of Hazan and Kale (2010). Is it possible to get bounds
similar to those obtained by Hazan and Kale (2010), but using squared change rather
than squared deviation variation?

• Is this the end of the story? Another natural notion of variation for OCO is simply
considering the maximum, over all points in the domain, of the variation (either
squared deviation or squared change) of the cost functions at the point. This is
analogous to the notion of variation that is appropriate in the online learning with
experts problem. Is it possible to obtain efficient regret bounds that depend on this
notion of variation instead? Inefficiently it is certainly possible by simply discretizing
the domain and applying the experts algorithm.
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