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1. Background

In the field of prediction with expert advice, a standard goal is to sequentially predict data
as well as the best expert in some reference set of ‘expert predictors’. Universal data com-
pression, a subfield of information theory, can be thought of as a special case. Here, the set
of expert predictors is a statistical model, i.e. a family of probability distributions, and the
predictions are scored using the logarithmic loss function, which, via the Kraft inequality,
gives the procedure an interpretation in terms of data compression. A prediction strategy is
a function that, for each n, given data x™ = x4, ..., x,, outputs a “predictive” probability
distribution p(- | ™) for X;1. For a given model M, the Shtarkov or Normalized Mazximum
Likelihood (NML) strategy relative to M, is the prediction strategy that achieves the min-
imaz optimal individual-sequence regret relative to M. NML has a number of drawbacks,
detailed below, and is therefore often approximated by more convenient strategies such as
Sequential Normalized Mazimum Likelihood (SNML) or the Bayesian strategy. The latter
predicts using the Bayesian predictive distribution for the model M, defined relative to
some prior w, which is often taken to be Jeffreys’ prior — in that case we abbreviate it to
J.B. The text below has been written so as to be (hopefully) understandable for readers
who do not know too many details of these concepts; for such details, see e.g. Griinwald
(2007) and/or Kotlowski and Griinwald (2011) (KG from now on).

2. The HB Result and Why it is Interesting

Hedayati and Bartlett (2012) (HB from now on) elegantly characterize the parametric statis-
tical families for which NML, SNML, and J.B. coincide: under a mild regularity condition
on the model, which is standard in the statistical literature, they coincide iff the SNML
strategy, viewed as a random process, is exchangeable. This is indeed the case for several
models, such as the Gaussian location family, the full Gaussian family in which both mean
and variance are parameters, and the exponential distributions. Yet it is not the case for
other simple models such as, e.g., the Bernoulli distributions. The HB result is important
for several reasons:

1. Worst-case optimality of Jeffreys’ prior. Jeffreys’ prior was introduced into Bayesian
statistics by H. Jeffreys as early as 1946, as a prior to be used for parametric models
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when no clear prior knowledge about the parameters is available. Jeffreys’ motivated
the prior from differential-geometric considerations. In the early 1990s it became
clear that it also has a completely different information-theoretic interpretation as
the prior which is minimax optimal for data-compression purposes, both when opti-
mality is measured in an individual sequence sense (called ‘minimax log-loss regret’
in learning theory) and when optimality is measured in an expected sense (called
‘minimax redundancy’ in information theory) — see Griinwald (2007), in particular
Chapter 6 and 8, for appropriate references and general background. However, the
optimality of Jeffreys’ prior was consistently shown to hold only (a) asymptotically
and (b) only if the parameter space is truncated (formally the parameter space has
to be ineccsi, see Grilnwald (2007)). HB’s result shows that, under some conditions,
J.B. is minimax regret-optimal also nonasymptotically, for all sample sizes, and also
for full, nontruncated parameter spaces. They also show that if a Bayesian strat-
egy (code) is optimal at all sample sizes, it has to be based on Jeffreys’ prior, thus
further clarifying the special status of this prior. If we consider nontruncated param-
eter spaces, then Jeffreys’ prior is often improper: its density integrates to oo rather
than 1. The HB result shows that J.B. can be minimax-regret optimal nevertheless.
Interestingly however, if one measures optimality by the more traditional (expected)
minimax redundancy, then the use of improper Jeffreys’ prior in nontruncated param-
eter space is not necessarily optimal Liang and Barron (2004); see (Griinwald, 2007,
Section 11.4.3.) for more discussion.

2. Awoiding infinite regret: a better basis for MDL model selection. When given a finite
number of models and some data, the Minimum Description Length (MDL) Princi-
ple for model selection (Barron et al., 1998) tells us to associate each model with
its respective NML strategy, and pick the model for which the corresponding NML
strategy gives the smallest codelength (cumulative log loss). Unfortunately, for most
interesting parametric models (including, e.g., the Gaussian model), the minimax cod-
ing regret is infinite, and hence no NML strategy exists. The only obvious way to
avoid this problem is, once again, to truncate the parameter space, but this has an
arbitrary flavor to it. While this undefined NML problem convinced some researchers
that MDL was no good at all, others started looking for generalizations of NML that
are always well-defined. The first hint that such a generalization might be possible
came, in my view, with Kakade et al. (2006), who showed that, in the abstract setting
of Gaussian processes, where the standard minimax regret is hopelessly infinite, one
can define a notion of ‘conditional’ regret and a ‘conditional’ version of NML, which
achieves the minimax conditional regret. In my 2007 MDL book Griinwald (2007), 1
worked out their proposal in more detail and came to the conclusion that it led to a
viable generalization of the NML concept that was applicable to arbitrary paramet-
ric models. In fact, Chapter 11 of my book considers more than seven proposals for
extending NML, the proposal of Kakade et al. being called ‘conditional NML-IT’. By
now, it is becoming increasingly clear that this is the only ‘natural’ generalization,
and indeed, justifiably, HB simply adopt the name ‘NML’ for ‘conditional NML-II.
To avoid any confusion, I henceforth call it ‘generalized NML’.
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Generalized NML still has two problems associated with it: first, it is often hard to
compute, and second, unlike Bayesian strategies, for many models it depends on the
horizon, i.e. the amount of data that will eventually be seen, and which in practice
might be unknown. For these reasons, Rissanen and Roos (2007); Roos and Rissanen
(2008) developed an approximation to NML which they called sequential NML, or
SNML for short. It is horizon-independent and often more easily computable than
the full NML. KG showed that SNML provides a reasonably good approximation of
generalized NML, and also found that for some special models, NML, SNML and the
Bayesian strategy with Jeffreys’ prior are all equivalent. The importance of the HB
result is that tells us exactly when this is the case.

3. Philosophical Considerations. At each point in time ¢, the SNML strategy for pre-
dicting(coding) the next outcome x;+1 may be viewed as the strategy that would lead
to minimax optimal regret if the horizon where known to be ¢ + 1, i.e. as if one
would stop the sequential prediction right after the currently performed step. Thus,
it is essentially a last-step minimax strategy in the sense of Takimoto and Warmuth
(2000). A priori, it is not at all clear why, at each day, predicting as if that day were
the last of a sequence of days on which one had to predict, could ever be optimal if
that day is in fact not the last of those days. Yet the HB result shows that in many
cases, it is. (see Section 1 of KG for more on this issue).

The HB result solves the first open problem stated in Section 6 of KG. Yet, like many a
good solution to an open problem, it immediately gives rise to a new question:

3. Open Problem raised by HB result

Exchangeability of the SNML random process is an elegant characterization of equivalence
between NML, SNML and Jeffreys-Bayes, but it is tedious to check and no list can be found
in the literature of families satisfying it. Is there some other, equivalent characterization
which can be immediately read off of the definition of the family? Or if not, perhaps there
is some other notion equivalent to SNML-exchangeability, which is more standard in the
literature, so that a list of families satisfying it is readily available?*

Below I shall give some first ideas on possible ways to investigate these questions. 1
hope HB (or somebody else) will follow up on it!

Towards a Characterization Easier to Check than SNML Exchangeability The
examples of parametric models with exchangeable SNML given by BH and KG are: the
exponential model, the Gaussian location family and the full Gaussian family. In addition,
P. Harremoés (personal communication) established that for the inverse Gaussian distribu-
tions, (a) for every finite sample size, the integrand in Jeffreys prior is proportional to the
integrand in the NML strategy; and (b) Jeffreys prior is proper and the NML strategy is
well-defined. Taken together this strongly suggests that for these models, NML and J.B.
coincide, which, with HB’s result, would imply that SNML is exchangeable. Assuming this
is the case, we find that those families for which SNML exchangeability has been established
all fall into the following groups: they are

1. Many thanks to W. Kotlowski who first brought up this question.
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1. infinitely divisible exponential families;

2. exponential families that are closed under convolution, i.e. if Xy,... X, ~ iid. py,
where pg is a member of the family, then the sum Y := )" | X; has a distribution
pg: for another member of the family

3. exponential dispersion models with continuously-valued dispersion (Jgrgensen, 1997);

4. Most intriguingly, they are all 1- and 2-parameter subfamilies of the 3-parameter
family of Tweedie® distributions (Jorgensen, 1997).

It would be of substantial mathematical interest to sort out whether SNML exchangeability
is equivalent to, or implied by, or implies, any of the four classes defined above. A first step
in sorting this out would be to check whether the geometric family is SNML-exchangeable:
while the geometric family is infinitely divisible, hence in class (1), it is not in class (2),
(3) or (4). A second step would be to check whether the Gamma family and the Poisson
family are SNML-exchangeable — both families are in all four classes... in any case, these
considerations suggest that SNML-exchangeability might hold for a wide variety of models,
and that it is in fact a deep notion whose importance extends far beyond the log-loss
prediction setting.
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