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Abstract. Tears and false neighborhoods are the defaults that may occur when a 
mapping is set up. Three recent articles discuss about these risks and proposed 
various means to detect and avoid such penalizing situations. In the present 
paper we link these methods and suggest a new strategy to visualize tears and 
false neighborhoods on a mapping by adapting well-tried tools.  
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1 Introduction 

Since W.S. Torgerson and his famous "embedding theorem" [34] the distance 
preservation is the objective of most of mapping methods (indeed, Torgerson 
demonstrates that Principal Component Analysis (PCA) [30, 15] objective is 
equivalent to look for the data projection that preserves distances "as much as 
possible"). In that framework, many following methods proposed to especially 
account for small distances, which lead to non-linear mappings. There is a very high 
number of methods belonging to this category (known as Non-Linear 
MultiDimensional Scaling or NL-MDS) and we will only cite here the most known 
among them. For example, Sammon's mapping [26] and Curvilinear Component 
Analysis (CCA) [8] interactively minimize the weighted difference between distances 
in the input and output space. ISOMAP [33] computes the geodesic distance [10, 32] 
(which can be seen as a "non-linear distance" that follows the data manifold) before 
linearly embedding data according to the Torgerson's method [34]. Locally Linear 
Embedding (LLE), [31] and related methods [3, 12] account for nearest neighbour 
distances in a sparse matrix and find data position in the output space according to a 
spectral method. Generative Topographic Mapping (GTM) [4] approaches a lower 
dimensional manifold to data. Gaussian Process Latent Variable Model (GP-LVM) 
[20] results from a probabilistic interpretation of PCA. Many others methods start 
from various other paradigms such as Self-Organizing Map (SOM) [16, 17] that 
visualizes data on a discrete grid, Non-Metric MultiDimensional Scaling (NM-MDS) 
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[18, 19] and RankVisu [22] that preserve the ranking of distances, Kernel Principal 
Component Analysis (KPCA) [27] that searches for non-linear relationships between 
variables according to the "kernel trick" [28, 29]. 

Several recent papers [36, 2, 21], highlight two risks while a mapping is generated 
from distances. These risks are named here "false neighbourhood" and "tear" 
according to the terminology in [21] (that corresponds to "gluing" area and "tearing" 
area respectively for [2] and area with low "trustworthiness" and low "continuity" for 
[36]). A "false neighbourhood" occurs when a large distance in the original space is 
associated with a small distance in the output space (the corresponding data points 
seems neighbours whereas they are not). Respectively, a "tear" occurs when a small 
distance in the original space is associated with a large distance in the output space 
(true neighbours are mapped apart). Please report to section 6 for some intuitive 
examples of "false neighbourhoods" and "tears". Obviously, "false neighbourhoods" 
and "tears" are expected to be avoided in mapping framework. Subsequently, [36] and 
[21] proposed two mapping methods designed to avoid "as much as possible" false 
neighbourhoods and tears. 

Moreover, when such penalizing situations occur anyway, exhibiting impacted 
areas should be a main concern as claimed in [2]. This article proposes then a sharp 
mean to visualize on the mapping the true neighbourhood of a given data point. 
However, a local index showing the risk level for each data point would be a critical 
improvement.  

The present article connects dimensionality reductions methods that optimize item 
positions by minimizing a criterion based on distances preservation. Such approach 
highlights pros and cons of each method and leads to considerations on detection of 
mappings defaults. In particular, we set up here a couple of criteria that allow 
visualizing and characterizing local mapping defaults. Indeed, there are actually few 
tools available in order to locally analyze a mapping quality. 

The present paper is organized as follows. Section 2 is dedicated to Sammon's 
mapping and Curvilinear Component Analysis, and how either false neighbourhoods 
or tears are penalized in such methods. Section 3 presents and compares two recent 
mapping methods accounting for both defaults: Data-Driven High Dimensional 
Scaling and Local MultiDimensional Scaling. Section 4 refers to several usual 
techniques to find out remaining defaults. Section 5 describes a method allowing 
characterising defaults as false neighbourhood or tear. An example on an intuitive 
dataset is subsequently presented in section 6.  

2 Mapping within avoiding false neighbourhoods or tears 

Two mapping methods are particularly interesting while considering mapping from 
the risk of false neighbourhood and tear point of view: the Sammon's mapping [26] 
and the Curvilinear Component Analysis (CCA) [8].  
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2.1 Sammon's mapping 

Historically, Sammon's mapping [26] is one of the first Non-Linear MultiDimensional 
Scaling methods. Its purpose is to minimize the following function: 
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
 ×−×=

ji
ij
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ijijSammon dFddCE
,

*    (1) 

where ijd  and *
ijd  represent the distances between data points i and j in the input 

space and output space, respectively; F is the so called weighting function. F is 
designed to emphasize small distances. As a consequence, function F: ++ ℜ→ℜ  has 

to decrease. In case of Sammon's mapping, the traditional choice is ( ) xxF 1= , 

2=k  and ∑=
ji

ijdC
,

 (please note that C is a constant and has no impact on the 

resulting mapping). 
In case where data points lie on a low-dimensional non-linear manifold, 

emphasizing small distance is expected to allow "unrolling" the dataset. 
Although this idea is obviously powerful (after 40 years, the Sammon's mapping is 

still used and inspired many subsequent methods), it shows a major drawback while 
considering the risk of false neighbourhood and tears:  

Sammon's mapping fairly penalizes tears, but it lightly penalizes false 
neighbourhoods. Indeed, let us suppose that there is a large distance between data 
points i and j in original space ( ijd ), but, by misfortune, the corresponding distance in 

output space ( *
ijd ) is small. ( )ijdF  is low and the difference between ijd  and *

ijd  

does not much weight on SammonE . Such situation ( ijd  high and *
ijd  low) corresponds 

to a false neighbourhood and could easily occur with Sammon's mapping.  

2.2 Curvilinear Component Analysis (CCA) 

In such framework, CCA [8] offers interesting behaviour. Indeed CCA is close to 
Sammon's mapping, but its weighting function relies on distance in the output space 
rather than in original space: 
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where 2=k , 21=C  and various functions have been proposed for F. 

The drawback highlighted in case of Sammon's mapping is fixed. However, even if 
false neighbourhoods are now fairly penalized, tears can easily occur: If ijd  is low 

and *
ijd  is high, ( )*

ijdF  is low. This case (which corresponds to a tear) is then lightly 

penalized. 
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3 Accounting for both false neighbourhoods and tears 

Confronting to some datasets, false neighbourhood and tears cannot be avoided. For 
example, everyone knows that a perfect planisphere is unreachable: there is no mean 
to spread out a sphere onto a plan without tearing. However, lightly penalising one of 
false neighbourhood or tear can cause unnecessary defaults. Penalizing the both risks 
is then critical.  

3.1 Data-Driven High dimensional Scaling (DD-HDS) 

Related to both Sammon's mapping and CCA, DD-HDS [21] is designed to cumulate 
advantage of these methods while avoiding the previously presented drawbacks.  

The minimized function is  

( )( )∑ 




 ×−×=−

ji
ijij

k

ijijHDSDD ddFddCE
,

** ,min   (3) 

where 1=C  and 1=k  (note the choice of k differ for DD-HDS, mostly to be 
consistent with the used optimization process).  

Thus, if a distance (in the original or in the output space) is low, the weighting 
function is high in order to account for a possible penalizing situation.  

Moreover, DD-HDS is yet the only one mapping method that takes account for the 
"concentration of measure phenomenon" (one of the most important phenomena 
belonging to the famous "curse of dimensionality") [11, 1] through the weighting 
function: F is proposed to be a sigmoid function adjusted on the original distance 
distribution. DD-HDS is then an efficient method for mapping (especially in case of 
high dimensional data). The main drawback is (so far) the relatively high 
computational time. 

3.2 Local MultiDimensional Scaling (Local MDS) 

The Local MDS [36], is also closely related to Sammon's mapping and CCA. It offers 
to the user a trade-off tuning between penalization of false neighbourhoods and tears 
through a parameter (noted λ  in the following). 

( )( ( ) ( )))*

,
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
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where 2=k , 21=C  and ( ) 1=xF  if x is lower than a chosen σ  and ( ) 0=xF  

else. For 0=λ  the Local MDS corresponds to CCA and for 1=λ  the Local MDS 
corresponds to Sammon's mapping (except regarding the function F). 
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3.3 DD-HDS versus Local MDS 

As shown above, solutions proposed by Local MDS and DD-HDS derived from a 
similar analysis. Although, they are somewhat close, advantage and drawback of each 
one should be highlighted.  

Local MDS proposes a trade-off between risks of false neighbourhood and tear. A 
user control (λ ) allows balancing these risks. Moreover, placing mappings on a plot 
that quantify mapping defaults in terms of "trustworthiness" and "continuity" with 
varying the λ  value displays a curve which can be related to a ROC curve (Receiver 
Operating Characteristic). ROC curves are known to be very practical in order to 
select an optimal decision. To the opposite, DD-HDS does not allow such control.  

Because DD-HDS equally penalizes false neighbourhoods and tears, it should be 
compared to Local MDS with 5.0=λ .  
Note that, because F is a decreasing function,  

 ( )( ) ( ) ( )( )** ,max,min ijijijij dFdFddF =    (5) 

Comparison between techniques accounting for false neighbourhoods and tears relies 

to comparison of weights: ( ) ( )( )*,max ijij dFdF  in case of DD-HDS and 

( ) ( )( ) 2*
ijij dFdF +  in case of Local MDS. For sake of simplicity, function F is 

chosen as ( ) 1=xF  if σ<x  and ( ) 0=xF  else (as proposed in Local MDS). 
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(a) Local MDS    (b) DD-HDS 

Fig. 1. Weighting functions F (vertical axis), according to distance in original space 
(x-axis) and distance in output space (y-axis). 

Let us consider these functions according to distances (Fig. 1). 
We can observe that when one distance is small and the corresponding one is large 

(this corresponds to a false neighbourhood or a tear), the Local MDS weighting 
function is lower than when both distances are small together. To the opposite, the 
DD-HDS weighting function is maximal on the whole area where a distance is small. 
In other words, the use of maximum corresponds to the "OR" logical operation: the 
weighting function is at its maximum if a false neighbourhood OR a tear is found. As 
a consequence, a maximum effort is given in order to avoid simultaneously both false 
neighbourhoods AND tears.  
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4 Visualizing defaults in mappings. 

Even if many solutions to visualize defaults in SOM have been developed, less 
solution exists in case of distances preserving methods. 

Of course, each proposed stress corresponds to an index that quantifies the global 
mapping quality. The parting in two index called "trustworthiness" and "continuity" 
proposed in [35] and [36] allows for placing mappings on a plot according to its 
ability to avoid false neighbourhoods and tears.  

The Shepard Diagram [18, 19, 7, 8] plots distances in original space versus 
distances in output space. It allows a totally model-free observation of the distance 
preservation according to distances. However, it is also a global analysis: the location 
of errors cannot be deduced from such diagram.  

Few methods have been proposed in order to locally observing mapping defaults. 
In this framework, [6] proposes to analyse the stability of areas on mappings 
initialised randomly; and [37] compares surfaces of triangles resulting from a 
Delaunay triangulation in the output space to surfaces of corresponding triangles in 
original space. 

For a consistent review, please report to [2]. 

4.1 Distortion visualization on Voronoï cells 

A local comparison of a given data point neighbourhoods is made possible by [2]. In 
this method, the Delaunay triangulation is computed in the output space. Each 
Voronoï cell is then coloured according to the proximity of the related data point in 
the output space (light colours for cells related to close data points). If the chosen data 
point is fairly mapped, every light cell will lie together, apart from dark cells. Else, if 
some dark cells are embedded close to the chosen data point, it corresponds to a false 
neighbourhood; if some light cells are apart, it corresponds to a tear. 

This method has the great advantage that the true neighbourhood of a given data 
point is immediately assessable in the mapping through an intuitive picture. However, 
the necessity of choosing a point of view makes it use somewhat irksome when we do 
not know a priori where to looking for a default. 

4.2 Pressure defined in DD-HDS algorithm 

The DD-HDS mapping is achieved by optimizing a stress (eq. 3) thanks to a Force 
Directed Placement (FDP) [13, 14, 9] algorithm. The FDP algorithm simulates a 
spring system: each data point corresponds to a mass and springs rely each couple of 
masses. Spring lengths at rest equal expected distances (i.e. original distances), in 
order to make original distances resemble to output ones after relaxation of the 
system. The spring stiffness allows for accounting for the weighting function F. The 
relaxation of the system is supposed to minimise the stress. Such algorithm is known 
to be robust to local minima and is somewhat few time consuming [24, 25]. The 
popularity of such algorithm increases in mapping community [5, 24, 23, 25, 21, 22]. 
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An other advantage is that FDP allow defining the "pressure" that locally quantifies 
the stress level: the pressure on a data point is the sum of strength of forces applied on 
the corresponding mass [21]. Truly, this does not strictly correspond to the academic 
definition of a pressure, but this term allows an intuitive understanding of this index: 
the "pressure" is the quantity of forces applied on a data point. 

Nevertheless, the pressure concept does not need an FDP optimisation, and could 
be defined from any mapping. Given a data point i, the pressure would be: 

( ) ( )∑ 




 ×−×=−

j

k

ijijHDSDD FddCiP .*    (6) 

Moreover, because the weighting function F can easily be customized, Sammon's 
mapping, CCA, Local MDS or DD-HDS model (and so on) could be considered as 
well according to the pressure concept. The combination of the mapping and the 
pressure of data points through a greyscale allows for locally observing the stress 
level. 

5 How to exhibit and characterize defaults? 

Plotting DD-HDS pressure allows displaying area where the mapping shows defaults, 
but it is not informative about the nature of the default. 

Furthermore, even if Sammon's and CCA weighting function have shown there 
limitation in order to drive the mapping [36, 21], they can be useful together to 
evaluate a mapping. Indeed, pressures related to Sammon's mapping and CCA can 
easily be defined: 

( ) ( )∑ 




 ×−×=

j
ij

k

ijijSammon dFddCiP *    (7) 

( ) ( )∑ 




 ×−×=

j
ij

k

ijijCCA dFddCiP **    (8) 

 
Due to the high similitude between formulas (7) and (8), values for SammonP  and CCAP  

can be compared if the choice of C, k and F are shared by two pressures. 
 For reason discussed in section 2.1 and 2.2, CCAP  is an efficient mean to detect 

false neighbourhoods and SammonP  catches tears.  

Note: DD-HDS pressure equals to 

( ) ( )( )∑ 
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which corresponds to  
( ) ( ) ( )( )iPiPiP CCASammonHDSDD ,max=−     (10) 
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6 Example 

A classical test for mapping methods is the openbox dataset. Data points lie on sides 
of a 3-dimensional cube without upper side (Fig. 2, right insert with grey background) 
and are embedded in 2-dimensional spaces. These mappings are presented in Fig. 2 
according to SammonE  and CCAE  stresses (curves and points) and SammonP  and CCAP  

pressures (small inserts). 
For a fair comparison, every methods used the same values for C and k 

( 1=C , 2=k ) and function F is chosen to be a rectangular function as proposed in 
Local MDS. 

Situating mapping in a plot according to SammonE  and CCAE  is in the spirit of 

Venna and Kaski "trustworthiness" and "continuity" visualisation [35, 36]. Note that, 
as expected, Sammon's mapping avoids tears to the cost of possible false 
neighbourhoods and CCA avoids false neighbourhoods to the cost of possible tears 
(see section 2). DD-HDS and Local MDS account for both defaults (section 3.1 and 
3.2). 

 

Local MDS, λ=0
(i.e. CCA)

Local MDS,
λ= 0.5

Local MDS, λ=1 
(i.e. Sammon’s mapping)

DD-HDS

ISOMAP

Psammon Pcca

Psammon Pcca

Psammon Pcca

Psammon Pcca

Psammon Pcca

Ecca

Esammon

Open side

Original 3D data

 
 

Fig. 2. 2D Mapping of a 3D open box (right insert with grey background) resulting 
from various methods as a function of Sammon's mapping and Curvilinear 

Sylvain Lespinats, Michaël Aupetit

– 62 –



Components Analysis stresses. ISOMAP and DD-HDS rely to empty circles, Local 
MDS for a λ varying from 0 to 1 (with 0.05 as step) rely to full circles linked by 
lines. CCA corresponds to Local MDS with 0=λ  and Sammon's mapping 
corresponds to Local MDS with 1=λ . The most on the left the mapping, the most 
false neighbourhoods are avoided; the lowest the mapping, the most tears are avoided.  

Mapping reached by five methods (ISOMAP, DD-HDS, CCA, Samon's mapping and 
Local MDS with 5.0=λ ), are provided in five couples of inserts. Positions of items 
are similar for each couple, but colours are different: in left inserts, darker the data 
points, higher the pressure related to Sammon's stress (eq. 7); in right inserts, data 
darker the data points, higher the pressure related to CCA stress (eq. 8). Colorscales 
are similar for every mapping. 

For five mappings (Sammon's mapping, CCA, Local MDS with 5.0=λ , DD-
HDS and ISOMAP), pressures related to Sammon's and CCA stresses are presented in 
small inserts. It allows visualizing tears (left inserts, which corresponds to SammonP ) 

and false neighbourhoods (right inserts, which corresponds to CCAP ) in the mappings 

(dark areas correspond to defaults). In case of CCA, two tears can easily be observed 
and correspond to black areas in left insert; no false neighbourhood appears (right 
insert). Sammon's mapping has smashed sides on the bottom face. It results many 
false neighbourhoods (highlighted by dark data points in left inserts) but few tears: 

SammonP , is low everywhere in the mapping (right insert). Two sides have been 

projected on the bottom by ISOMAP, creating false neighbourhoods. DD-HDS and 
Local MDS with 5.0=λ  reach close mappings. Light stretch can be observed at the 
top of the box (darker areas in left inserts) and some compressions in the bottom side 
(especially on the corners, right inserts). 

7 Conclusion 

The objective of the present paper is not to grade mapping methods. Indeed, it is 
obvious that: 1) the presented methods are closely related and will often reach close 
results (just as Local MDS and DD-HDS with the openbox dataset); 2) there 
respective originalities provide to each method its own advantage that should be 
exploited according to the situation. 

On the one hand, a good point for DD-HDS on Local MDS when there is no reason 
for a priori favour false neighbourhood or tear is its capacity to accounting for both 
false neighbourhoods and tears within one single parameter. This advantage should 
not be neglected; indeed it permits to spare the balancing parameter. On the other 
hand, the Venna and Kaski's parameter give to Local MDS a unique chance to 
visually appreciate the trade-off between false neighbourhood and tears. In that 
framework, because the choice of λ  from resulting mapping falls under the data 
expert responsibility, tools presented here could be a useful supplementation.  

The pressures proposed in section 5 are contenting themselves to finding out and 
characterizing mapping defaults. Such procedure should be combined with 
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visualization of neighbourhoods technique proposed in [2]. Indeed, SammonP  and CCAP  

can guide the user to the items for which such analysis is the most relevant. 
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