False neighbourhoods and tears are the main mapping
defaults. How to avoid it? How to exhibit remaining
ones?

Sylvain Lespinats, Michaél Aupetit

CEA, LIST, Multisensor Intelligence and Machine Liag Laboratory. F-91191 Gif-sur-
Yvette, France (sylvain.lespinats@cea.fr and michapetit@cea.fr).

Abstract. Tears and false neighborhoods are the defaultsrthay occur when a

mapping is set up. Three recent articles discusstahese risks and proposed
various means to detect and avoid such penaliziogt®ns. In the present

paper we link these methods and suggest a nevegyr&b visualize tears and
false neighborhoods on a mapping by adapting wiel+tools.
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1 Introduction

Since W.S. Torgerson and his famous "embedding réingb [34] the distance
preservation is the objective of most of mappingthods (indeed, Torgerson
demonstrates that Principal Component Analysis (PC30, 15] objective is
equivalent to look for the data projection that ggmves distances "as much as
possible™). In that framework, many following medtiso proposed to especially
account for small distances, which lead to nondimmappings. There is a very high
number of methods belonging to this category (knowvas Non-Linear
MultiDimensional Scaling or NL-MDS) and we will gnkite here the most known
among them. For example, Sammon's mapping [26] Gad/ilinear Component
Analysis (CCA) [8] interactively minimize the weitgd difference between distances
in the input and output space. ISOMAP [33] comptitesgeodesic distance [10, 32]
(which can be seen as a "non-linear distance"ftilmws the data manifold) before
linearly embedding data according to the Torgessométhod [34]. Locally Linear
Embedding (LLE), [31] and related methods [3, 12¢aunt for nearest neighbour
distances in a sparse matrix and find data positidhe output space according to a
spectral method. Generative Topographic MappingM{EBT4] approaches a lower
dimensional manifold to data. Gaussian ProcessntLatariable Model (GP-LVM)
[20] results from a probabilistic interpretation BCA. Many others methods start
from various other paradigms such as Self-Orgagiditap (SOM) [16, 17] that
visualizes data on a discrete grid, Non-Metric MRithensional Scaling (NM-MDS)
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[18, 19] and RankVisu [22] that preserve the ragkif distances, Kernel Principal
Component Analysis (KPCA) [27] that searches fon-finear relationships between
variables according to the "kernel trick" [28, 29].

Several recent papers [36, 2, 21], highlight tveksiwhile a mapping is generated
from distances. These risks are named here "fakighbourhood" and "tear"
according to the terminology in [21] (that corresgds to "gluing” area and "tearing"
area respectively for [2] and area with low "trustthiness" and low "continuity” for
[36]). A "false neighbourhood" occurs when a ladjgtance in the original space is
associated with a small distance in the output esgiee corresponding data points
seems neighbours whereas they are not). Respgctavétear" occurs when a small
distance in the original space is associated wildwge distance in the output space
(true neighbours are mapped apart). Please reposedtion 6 for some intuitive
examples of "false neighbourhoods" and "tears".iQisly, "false neighbourhoods"
and "tears" are expected to be avoided in mappargdwork. Subsequently, [36] and
[21] proposed two mapping methods designed to aVaédmuch as possible" false
neighbourhoods and tears.

Moreover, when such penalizing situations occurvayy exhibiting impacted
areas should be a main concern as claimed in [#§ article proposes then a sharp
mean to visualize on the mapping the true neightma of a given data point.
However, a local index showing the risk level fack data point would be a critical
improvement.

The present article connects dimensionality redastimethods that optimize item
positions by minimizing a criterion based on dists preservation. Such approach
highlights pros and cons of each method and leaad®nsiderations on detection of
mappings defaults. In particular, we set up hereoaple of criteria that allow
visualizing and characterizing local mapping defauindeed, there are actually few
tools available in order to locally analyze a magpjuality.

The present paper is organized as follows. Se@ids dedicated to Sammon's
mapping and Curvilinear Component Analysis, and ledtiver false neighbourhoods
or tears are penalized in such methods. Sectiore$§epts and compares two recent
mapping methods accounting for both defaults: [@aigen High Dimensional
Scaling and Local MultiDimensional Scaling. Sectidnrefers to several usual
techniques to find out remaining defaults. Secttonlescribes a method allowing
characterising defaults as false neighbourhoodear. tAn example on an intuitive
dataset is subsequently presented in section 6.

2 Mapping within avoiding false neighbourhoods or ¢ars

Two mapping methods are particularly interestinglevieonsidering mapping from
the risk of false neighbourhood and tear pointiefw the Sammon's mapping [26]
and the Curvilinear Component Analysis (CCA) [8].
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2.1 Sammon's mapping

Historically, Sammon's mapping [26] is one of thistfNon-Linear MultiDimensional
Scaling methods. Its purpose is to minimize théofaing function:

E cmmon =CXZUdij _di} “x F(dii )) @)
L]

where dij and d; represent the distances between data poiatelj in the input

space and output space, respectivélyis the so called weighting functioft. is

designed to emphasize small distances. As a coesegufunctiorF: [1, — [, has

to decrease. In case of Sammon's mapping, thetitrzali choice is F(x):]/x,

k=2 and C = Zdij (please note that is a constant and has no impact on the
i

resulting mapping).

In case where data points lie on a low-dimensionah-linear manifold,
emphasizing small distance is expected to allowdiling" the dataset.

Although this idea is obviously powerful (after y€ars, the Sammon's mapping is
still used and inspired many subsequent methodshows a major drawback while
considering the risk of false neighbourhood andstea

Sammon's mapping fairly penalizes tears, but iththg penalizes false
neighbourhoods. Indeed, let us suppose that tlseeelarge distance between data

pointsi andj in original space cdij ), but, by misfortune, the corresponding distamce i
output space d;) is small. F(dij) is low and the difference betwee) and d;

does not much weight ok, ... Such situation (ﬂij high andda low) corresponds
to a false neighbourhood and could easily occun @@mmon's mapping.

2.2 Curvilinear Component Analysis (CCA)

In such framework, CCA [8] offers interesting belwav. Indeed CCA is close to
Sammon's mapping, but its weighting function rebesdistance in the output space
rather than in original space:

Ecea =Cx X ([d, ;[ xF(g;)) @
]

wherek =2, C =]/2 and various functions have been proposedrfor
The drawback highlighted in case of Sammon's mapisifixed. However, even if
false neighbourhoods are now fairly penalized,stezn easily occur: Iﬂij is low

and d; is high, F(d”) is low. This case (which corresponds to a teathes lightly
penalized.
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3 Accounting for both false neighbourhoods and tear

Confronting to some datasets, false neighbourheadtears cannot be avoided. For
example, everyone knows that a perfect planispisevareachable: there is no mean
to spread out a sphere onto a plan without teakHlogvever, lightly penalising one of

false neighbourhood or tear can cause unnecessaylt$. Penalizing the both risks
is then critical.

3.1 Data-Driven High dimensional Scaling (DD-HDS)

Related to both Sammon's mapping and CCA, DD-HO$ iRdesigned to cumulate
advantage of these methods while avoiding the pusly presented drawbacks.
The minimized function is

Eoo-vos =C* X |d, ~d;|* x F{min(a, .d; ) ®
]

where C =1 and k =1 (note the choice ok differ for DD-HDS, mostly to be
consistent with the used optimization process).

Thus, if a distance (in the original or in the autppace) is low, the weighting
function is high in order to account for a possitémalizing situation.

Moreover, DD-HDS is yet the only one mapping methuat takes account for the
"concentration of measure phenomenon” (one of tlwstnimportant phenomena
belonging to the famous "curse of dimensionalitjg’], 1] through the weighting
function: F is proposed to be a sigmoid function adjusted han driginal distance
distribution. DD-HDS is then an efficient method fmapping (especially in case of
high dimensional data). The main drawback is (s0 fdne relatively high
computational time.

3.2 Local MultiDimensional Scaling (Local MDS)

The Local MDS [36], is also closely related to Samma mapping and CCA. It offers
to the user a trade-off tuning between penalizatibfalse neighbourhoods and tears
through a parameter (notetl in the following).

Euos =Cx X ([d ~dj[ < (1o, (- 2)xF (o)) @

wherek =2, C=1/2 and F(x) =1 if x is lower than a choseag and F(x) =0

else. ForA =0 the Local MDS corresponds to CCA and =1 the Local MDS
corresponds to Sammon's mapping (except regardenfunctionF).
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3.3 DD-HDS versus Local MDS

As shown above, solutions proposed by Local MDS BEHHDS derived from a
similar analysis. Although, they are somewhat ¢lastvantage and drawback of each
one should be highlighted.

Local MDS proposes a trade-off between risks iddaleighbourhood and tear. A

user control ) allows balancing these risks. Moreover, placirgppings on a plot
that quantify mapping defaults in terms of "trustthiness" and "continuity" with
varying the A value displays a curve which can be related t@©& Rurve (Receiver
Operating Characteristic). ROC curves are knowrbdovery practical in order to
select an optimal decision. To the opposite, DD-HIa8s not allow such control.

Because DD-HDS equally penalizes false neighbouth@nd tears, it should be
compared to Local MDS witil = 05.
Note that, becaudeis a decreasing function,

F(mln(d”- ,d; )) = ma>{F (dij ) F(dii )) (®)

Comparison between techniques accounting for fadsghbourhoods and tears relies
to comparison of weights:maX(F (dij ) F(d;; )) in case of DD-HDS and

(F(dij)+ F(di] ))/2 in case of Local MDS. For sake of simplicity, ftina F is
chosen ad- (x) =1if x<og and F(x) =0 else (as proposed in Local MDS).

(@) % (b)

0 d;
(a) Local MDS (b) DD-HDS

Fig. 1. Weighting functions= (vertical axis), according to distance in origisplace
(x-axis) and distance in output space (y-axis).

Let us consider these functions according to dégarfFig. 1).

We can observe that when one distance is smalttendorresponding one is large
(this corresponds to a false neighbourhood or &),télae Local MDS weighting
function is lower than when both distances are ktogkther. To the opposite, the
DD-HDS weighting function is maximal on the wholea where a distance is small.
In other words, the use of maximum correspond$1¢0"OR" logical operation: the
weighting function is at its maximum if a false giebourhood OR a tear is found. As
a consequence, a maximum effort is given in ordexvbid simultaneously both false
neighbourhoods AND tears.
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4 Visualizing defaults in mappings.

Even if many solutions to visualize defaults in SQive been developed, less
solution exists in case of distances preservindout.

Of course, each proposed stress corresponds todar that quantifies the global
mapping quality. The parting in two index calledustworthiness" and "continuity"
proposed in [35] and [36] allows for placing mamsnon a plot according to its
ability to avoid false neighbourhoods and tears.

The Shepard Diagram [18, 19, 7, 8] plots distanice®riginal space versus
distances in output space. It allows a totally ndide observation of the distance
preservation according to distances. However, dss a global analysis: the location
of errors cannot be deduced from such diagram.

Few methods have been proposed in order to lochkberving mapping defaults.
In this framework, [6] proposes to analyse the iBtgbof areas on mappings
initialised randomly; and [37] compares surfaces tdngles resulting from a
Delaunay triangulation in the output space to s@$aof corresponding triangles in
original space.

For a consistent review, please report to [2].

4.1 Distortion visualization on Voronoi cells

A local comparison of a given data point neighboods is made possible by [2]. In
this method, the Delaunay triangulation is computedthe output space. Each
Voronoi cell is then coloured according to the pmoty of the related data point in
the output space (light colours for cells relatedlbse data points). If the chosen data
point is fairly mapped, every light cell will li@gether, apart from dark cells. Else, if
some dark cells are embedded close to the chosarpdent, it corresponds to a false
neighbourhood; if some light cells are apart, iresponds to a tear.

This method has the great advantage that the &ighlmourhood of a given data
point is immediately assessable in the mappinguinan intuitive picture. However,
the necessity of choosing a point of view makesé& somewhat irksome when we do
not know a priori where to looking for a default.

4.2 Pressure defined in DD-HDS algorithm

The DD-HDS mapping is achieved by optimizing a stréeq. 3) thanks to a Force
Directed Placement (FDP) [13, 14, 9] algorithm. THEBP algorithm simulates a
spring system: each data point corresponds to & arass springs rely each couple of
masses. Spring lengths at rest equal expectedhdésta(i.e. original distances), in
order to make original distances resemble to outmés after relaxation of the
system. The spring stiffness allows for accounforgthe weighting functior. The
relaxation of the system is supposed to minimigesthess. Such algorithm is known
to be robust to local minima and is somewhat faweticonsuming [24, 25]. The
popularity of such algorithm increases in mappiommunity [5, 24, 23, 25, 21, 22].
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An other advantage is that FDP allow defining theessure" that locally quantifies
the stress level: the pressure on a data poiheisum of strength of forces applied on
the corresponding mass [21]. Truly, this does tridtk/ correspond to the academic
definition of a pressure, but this term allows atuitive understanding of this index:
the "pressure" is the quantity of forces appliechatata point.

Nevertheless, the pressure concept does not neE®Rroptimisation, and could
be defined from any mapping. Given a data ppitite pressure would be:

PDD—HDS (') =Cx Zj:(‘dii B di} k % F()) ©

Moreover, because the weighting functiercan easily be customized, Sammon's
mapping, CCA, Local MDS or DD-HDS model (and so eolld be considered as
well according to the pressure concept. The contibimeof the mapping and the
pressure of data points through a greyscale allimwvdocally observing the stress
level.

5 How to exhibit and characterize defaults?

Plotting DD-HDS pressure allows displaying area rghtbe mapping shows defaults,
but it is not informative about the nature of tredadilt.

Furthermore, even if Sammon's and CCA weightingction have shown there
limitation in order to drive the mapping [36, 21hey can be useful together to
evaluate a mapping. Indeed, pressures related monBa's mapping and CCA can
easily be defined:

PSammn(i):Cij:Odij _di?‘k x F(dij )j Y

Prcali) = Cx X |d, ;| xF(g; ) ®
J

Due to the high similitude between formulas (7) &) values forP, . . and P,
can be compared if the choice of C, k and F areeshay two pressures.
For reason discussed in section 2.1 and B2, is an efficient mean to detect

false neighbourhoods arfd,, ., catches tears.
Note: DD-HDS pressure equals to

Poo-ros(1)=C x 33([d, = ;[ xF(min(a, .a; ) ©
J

which corresponds to
PDD—HDS(i) = ma)<PSarm‘on(i)’ PCCA(i )) (10)
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6 Example

A classical test for mapping methods is the operdataset. Data points lie on sides
of a 3-dimensional cube without upper side (Figight insert with grey background)
and are embedded in 2-dimensional spaces. Thespimgapare presented in Fig. 2
according toE, ..., and E_., stresses (curves and points) aRg ., and P..,
pressures (small inserts).

For a fair comparison, every methods used the saalees for C and k
(C =1,k =2) and functionF is chosen to be a rectangular function as proposed
Local MDS.

Situating mapping in a plot according ta., .., and E.., is in the spirit of
Venna and Kaski "trustworthiness" and "continuitySualisation [35, 36]. Note that,
as expected, Sammon's mapping avoids tears to ¢t af possible false
neighbourhoods and CCA avoids false neighbourheodhe cost of possible tears
(see section 2). DD-HDS and Local MDS account fathidefaults (section 3.1 and
3.2).

E
sammon O ISOMAP

Local MDS, A=0 Psammon Peca
i.e. CCA .
( ) P Pcca

sammon

st e

RYCRY
e

4
.....

F3 o Original 3D data

Open s\da

P Pcca

sammon

g

Prees
1282223
B

P Pcca

sammon

Local MDS,
A=05

sammon

P

Local MDS, A=1
(i.e. Sammon’s mapping)

E

cca

Fig. 2. 2D Mapping of a 3D open box (right insert with gregickground) resulting
from various methods as a function of Sammon's ingp@and Curvilinear
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Components Analysis stresses. ISOMAP and DD-HD$ teelempty circles, Local
MDS for a Avarying from 0 to 1 (with 0.05 as step) rely tolfaircles linked by
lines. CCA corresponds to Local MDS with =0 and Sammon's mapping
corresponds to Local MDS witd =1. The most on the left the mapping, the most
false neighbourhoods are avoided; the lowest thgping, the most tears are avoided.

Mapping reached by five methods (ISOMAP, DD-HDS,ACGamon's mapping and
Local MDS with A = 0.5), are provided in five couples of inserts. Posii@f items
are similar for each couple, but colours are déffer in left inserts, darker the data
points, higher the pressure related to Sammoresssifeq. 7); in right inserts, data
darker the data points, higher the pressure relat€fiCA stress (eq. 8). Colorscales
are similar for every mapping.

For five mappings (Sammon's mapping, CCA, Local Mbigth A = 05, DD-
HDS and ISOMAP), pressures related to Sammon'<C&A stresses are presented in
small inserts. It allows visualizing tears (lefsémts, which corresponds t8,, ...)

and false neighbourhoods (right inserts, whichezponds toP.., ) in the mappings

(dark areas correspond to defaults). In case of Q@4 tears can easily be observed
and correspond to black areas in left insert; rsefaeighbourhood appears (right
insert). Sammon's mapping has smashed sides obhottem face. It results many
false neighbourhoods (highlighted by dark data tsoin left inserts) but few tears:

Pommon» 1S low everywhere in the mapping (right inseffwo sides have been

projected on the bottom by ISOMAP, creating falegghbourhoods. DD-HDS and
Local MDS with A = 0.5 reach close mappings. Light stretch can be obdeat/¢he
top of the box (darker areas in left inserts) amehes compressions in the bottom side
(especially on the corners, right inserts).

7 Conclusion

The objective of the present paper is not to gnadgping methods. Indeed, it is
obvious that: 1) the presented methods are clasédyed and will often reach close
results (just as Local MDS and DD-HDS with the dp®n dataset); 2) there
respective originalities provide to each methodadten advantage that should be
exploited according to the situation.

On the one hand, a good point for DD-HDS on Loc&8l$Mwhen there is no reason
for a priori favour false neighbourhood or teaitsscapacity to accounting for both
false neighbourhoods and tears within one singlarpater. This advantage should
not be neglected; indeed it permits to spare tHanbang parameter. On the other
hand, the Venna and Kaski's parameter give to L&BIS a unigque chance to
visually appreciate the trade-off between falsegiieourhood and tears. In that
framework, because the choice 4f from resulting mapping falls under the data
expert responsibility, tools presented here coeld liseful supplementation.

The pressures proposed in section 5 are contetitergselves to finding out and
characterizing mapping defaults. Such procedureuldhde combined with
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visualization of neighbourhoods technique propasdd]. Indeed,P, ..,

and P,

n

can guide the user to the items for which suchysisals the most relevant.
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