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Abstract. Discretization techniques for data set features have received 
increasing research attention. Results using discretized features are usually 
more compact, shorter, and accurate than using continuous values. In this paper, 
an algorithm called Discretization using Class information to Reduce number of 
intervals (DCR) is proposed. DCR uses both class information and order 
between attributes to determine the discretization scheme with minimum 
number of intervals. Attribute discretization order is determined based on 
information gain of each attribute with respect to the class attribute. The 
number of intervals is reduced by deleting training data at each step of attribute 
discretization. Experiments are performed to compare the predictive accuracy 
and execution time of this algorithm with several well-known algorithms. 
Results show that discretized features generated by the DCR algorithm contain 
a smaller number of intervals than other supervised algorithms using less 
execution time, and the predictive accuracy is as high or higher.  
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1   Introduction 

Data mining is a powerful approach to extracting meaningful information from large 
and unwieldy databases. However, for efficiency, appropriate pre-processing of the 
input databases is needed. The majority of these databases usually come in a mixed 
format called “mixed-mode data” containing both discrete and continuous features, as 
shown in Table 1. In the table, feature2 is discrete while feature1, 3, and 4 are 
continuous. Some learning algorithms [4, 10, 12, 18] can handle only discrete-valued 
attributes, while some others can handle continuous attributes but still perform better 
with discrete-valued attributes [6, 11]. This drawback can be overcome by using a 
discretization algorithm as a pre-processing step for data mining.  

Discrete values offer several advantages over continuous ones, such as data 
reduction and simplification. Quality discretization of continuous attributes is an 
important problem that has effects on speed, accuracy, and understandability of the 
classification models [20]. 

Although much research has been done in the area of discretization, many 
algorithms still do not take advantage of class information to increase their 
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discretization performance. Thus, the resulting discretization schemes do not provide 
much efficiency when used in the classification process, e.g. they contain more 
intervals than necessary. Unsupervised discretization algorithms that do not use class 
information include the equal-width [1] and equal-frequency methods [17] that divide 
continuous ranges into sub-ranges. Supervised algorithms, such as statistics-based 
[11, 15], entropy-based [21], and class-attributes interdependency-based algorithms 
[13] use class information; however, these algorithms do not make use of relations 
between attributes in the database. 

Table 1. Data set contanning both decrete and continuous attributes 

ID feature1 feature2 feature3 feature4 Class 

1 17 Yes 49 33 Z 
2 19 No 48 21 Y 
3 21 No 50 50 Y 
4 21 No 53 19 X 
5 22 Yes 65 49 Y 
6 35 Yes 70 55 Y 
7 33 Yes 89 76 Z 
8 42 No 48 80 Z 
9 40 Yes 63 33 Y 

10 22 Yes 72 21 X 
11 23 Yes 80 10 X 
12 20 Yes 73 9 X 
13 19 No 65 43 Y 
14 25 Yes 90 95 Z 
15 29 Yes 73 21 Y 

 
There are algorithms [2, 5] that use both class information and relations between 

attributes in their discretization process, however, they are not computationally 
efficient. Also, discretizations with the same accuracy but with fewer number of 
intervals are preferable to those with large number of intervals since they cause less 
fragmentation of the data in the sub-nodes of decision trees [16]. The Discretization 
Using Class Information to Reduce Number of Intervals (DCR) algorithm presented 
here uses both class information and order between attributes to determine an efficient 
discretization scheme. The order of attribute discretization is determined based on 
information gain of each attribute with respect to the class attribute. The number of 
intervals is successively reduced by deleting training data at each step of 
discretization. DCR is able to find the minimum number of discrete intervals while 
maintaining the accuracy of the classifier. Experimental results show that the 
discretized features generated using DCR nearly achieve the smallest number of 
intervals for a given level of accuracy. Further, DCR uses less execution time than 
well-known supervised discretization techniques such as CAIM and ChiMerge.   
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In the next section, we present the class-based discretization process. In Section 3 
and 4 we present the DCR discretization concepts and algorithm, resp. we discuss the 
results of comparative experiments in Section 5. Finally, Section 6 gives the 
conclusion and further work. 

2   Class-based Discretization 

In this section, we present class-based discretization process. First we describe the 
discretization process for each attribute; then we describe the information gain used 
for sorting the attributes to be discretized by the process that we purpose; the order of 
attribute in discretization makes the result different. Lastly, we describe the quanta-
matrix [9] that shows the relation between class and discretization scheme.  

2.1   Univariate discretization process 

Discretization can be univariate or multivariate. Univariate discretization quantifies 
one continuous feature at a time while multivariate discretization simultaneously 
considers multiple features. We mainly consider univariate (typical) discretization in 
this paper. A typical discretization process broadly consists of four steps: 

1. Sort the values of the attribute to be discretized. 
2. Determine a cut-point for splitting or adjacent intervals for merging. 
3. Split or merge intervals of continuous values, according to some criterion. 
4. Stop at some point. 

2.2   Information Gain 

Information gain is used in C4.5 [7] to choose the best attribute (maximum 
information gain) for splitting the data, but this method can handle only discrete 
values. For continuous valued attributes, there is a need for a discretization algorithm 
that transforms continuous attributes into discrete ones. Using the data in Table 1 as 
an example, calculate information gain of features 1, 3, and 4 using the equal width 
discretization method, where the range of values of a feature is evenly divided into 
equi-width intervals, to discretize these attributes before calculating the information 
gain. If we discretize the features in Table 1 into five intervals, then the information 
gains of feature1, 3, and 4 are 0.78, 1.023, and 1.53, resp.  

2.3   Class-attribute interdependency discretization 

The main objective of this paper is to find the discretization scheme for each 
continuous attribute that contains the minimum number of intervals while minimizing 
the loss of class-attribute interdependency. The quanta-matrix plays a major role in 
achieving this purpose. Table 2 shows a quanta-matrix of feature f of a given 
discretization schema D. In this quanta-matrix, training dataset consists of M 
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examples, where each example belonging to only one of the S classes. If we discretize 
attribute fi -- for which d0 is the minimum value and dn is the maximum value -- into n 
intervals, then the discretization scheme of attribute fi is 

 

Di = {[d0,d1], (d1,d2], … , (dn-1,dn]} 
 

Using discretization scheme Di, each value of attribute fi can be classified into one 
of the n intervals.  

Table 2. Quanta-matrix of feature f of a given discretization scheme D 

Interval 
Class 

[d0,d1] .. (dr-1,dr] .. (dn-1,ddn] 
Class Total 

C1 q11 .. q1r .. q1n q1+ 
: : .. : .. : : 

Ci qi1 .. qir .. qin qi+ 
: : .. : .. : : 

CS qS1 .. qSr .. qSn qS+ 

Interval Total q+1 .. q+r .. q+n M 

 
In Table 2, qir is the total number of continuous values belonging to the ith class 

that are in interval (dr-1,dr] ; qi+ is the total number of objects belonging to the ith class, 
and q+r is the total number of continuous values of attribute fi that are within the 
interval (dr-1,dr], for i = 1, 2, ..., S and r = 1, 2, ..., n. Table 3 shows a quanta-matrix of 
feature4 (taken from Table 1) with discretization schema D4 = {[9,20], (20,65.5], 
(65.5,95]}. 

Table 3. Quanta-matrix of feature4 from Table 1 with the discretization schema D4 = {[9,20], 
(20,65.5], (65.5,95]} 

Interval 
Class 

[9,20] (20,65.5] (65.5,95] 
Class Total 

X 3 1 0 4 

Y 0 7 0 7 

Z 0 1 3 4 

Interval Total 3 9 3 15 
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3   Discretization using Class Information to Reduce Number of 
Intervals 

In this section, we describe the DCR supervised discretization algorithm whose 
objective is to maximize predictive accuracy while generating a (possibly) minimal 
number of discrete intervals. To maximize the predictive accuracy, DCR uses class 
intervals, reduces training transactions at each step of attribute discretization. 

3.1   Using class information to find the best cut points 

To evaluate the relation between the discretization scheme and class for each 
attribute, a criterion called DCR is defined as (using the notation as in Table 2): 

2
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The DCR value is the average of the distribution of class ( 1
n
r=∑ ) in each interval 

( 1
2S

i ir r
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∑ ). It has the following properties: 
• The algorithm is able to find the discretization scheme where each interval has one 

major class, consider each interval r in the quanta-matrix, qir value is in range [0, 
q+r]. Thus, an interval has the maximal one major class when qir equals q+r. Since 
DCR depends on 2

1
S
i irq=∑ , it achieves its maximum when each interval has all of its 

values grouped within a single class label. 

Table 4. Distribution of class for each interval 

 
 
• The 2

irq  values are used to compute the distribution of classes in each interval. To 
find the discretization scheme when each interval has one major class, the 
discretization scheme in Table 4(a) might be better than the scheme in Table 4(b). 
DCR is able to distinguish which of the two scenarios is better. Because the 
interval in 4(a) has a smaller distribution of classes and it may possibly use only 

 Interval  Class 
.. (dr-1,dr] .. 

Class Total

C1 .. 0 ..  
C2 .. 5 ..  
C3 .. 10 ..  

Total  15   

 Interval  Class 
.. (dr-1,dr] .. 

Class Total 

C1 .. 2 ..  
C2 .. 3 ..  
C3 .. 10 ..  

Total  15   

  (a)            (b) 
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one attribute to classify non-majority class. But the interval in Table 4(b) must use 
at least two attributes for classification. 

• The 2

irq  values are divided by q+r for normalization. Numerical overflow errors can 

be avoided by calculating 2

ir rq q
+

 as   (qir /q+r) qir, so the maximum value is qir. 

3.2   Deleting training transactions to generate the minimum number of discrete 
intervals 

We use the relation between attributes to reduce the size of training data by removing 
transactions for which the (continuous) values are in the interval having all of its 
values grouped within a single class label. Thus, the next continuous attribute has 
only unclassified transactions to be discretized. This process can also reduce the 
execution time for classifying other attributes. Further, the size of the training data is 
reduced at each attribute discretization. Fig. 1(a) shows the discretization scheme 
{[9,20], (20,27], (27,38], (38,65.5], (65.5,95]} of feature4. 

 

 
Fig. 1. At each attribute dicretization, trainning transactions are deleted to reduce the number of 
intervals 

In Fig. 1, the class of continuous values that are in intervals [9,20], (38,65.5], and 
(65.5,95] are grouped within a single class label X, Y, and Z, resp, so these 
transactions are removed as they are classifiable transaction. Fig. 1(c) shows the 
remaining transactions that are used in next attribute to discretization. 

In this method attributes are discretized one by one, and the order of attribute 
discretization may effect the final classifiers. Hence, the DCR algorithm uses the 
relation between attribute and class to compute the information gain value for each 
attribute with class and then discretize each attribute by its information gain value in 
descending order. 
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4   DCR Algorithm 

The optimal discretization scheme can be found by searching over the space of all 
discretization schemes for the one with the highest DCR value; however, such a 
search is highly combinatorial and time consuming. Instead, the DCR algorithm uses 
a greedy approach, which searches for the approximate optimal value of the DCR 
criterion by finding locally maximum values of the criterion. Although this approach 
does not guarantee a global maximum, it is both computationally inexpensive and 
results in a near optimal discretization scheme, as shown in Section 5. The algorithm 
is composed of two principle steps: 

1. Order the attribute to be discretized. 
2. Discretize and reduce the size of current training data for each attribute 
Pseudo code of the DCR algorithm is given in Fig. 2. 
 
 

 
 
 
 
 
 
 
 
 

 

Fig. 2. Pseudocode of the DCR Algorithm 

In steps 1-3 the algorithm orders attributes to be discretized based on the 
information gain value in descending order. Based on the information gain of 
attributes in section 2.2, the algorithm will discretize feature4, 3, and 1, resp., in step 
5.  

In the discretization process (steps 6-19), DCR starts with a single interval that 
covers all possible values of continuous attribute Fi and divides it interactively. In 
step 12, form a set of all distinct values of fi in ascending order, and initialize all 

 

Input: Training data set DB consisting of continuous attributes Fi, and class attribute C 
from a total of s classes 
 

1. for each Fi 
2. Ei = information_gain(Fi, C); 
3. arrange_order_desc(F, E); 
4. db = DB; 
5. for each fi  // feature Fi of current training data set db 
6. di0 = min(Fi); 
7. din = max(Fi); 
8. Di = {[di0, din]} 
9. if (db ≠ Ø) then 
10. k = 1; 
11. MaxDCR = 0; 
12. EB = essential_boundary_set(fi); 
13. Repeat 
14. DCR = compute_max_dcr_boundary(fi, Di, EB); 
15. If (DCR > MaxDCR) or (k < s) then 
16. Update Di with a boundary that has the highest DCR 
17. MaxDCR = DCR; 
18. k = k + 1; 
19. Until (DCR <= MaxDCR) and (k >= s) 
20. db = reducing_transaction(db, Di); 
21. D = D U {Di} 

 

Output: Set of all discretization scheme D 
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possible interval boundaries B with all the midpoints of all the adjacent pairs in the 
set, denoted by B = {a0, …, am}. If the instances that fall into the intervals (ai-1, ai] and 
(ai, ai+1] belong to the same class, remove ai from set B until there are instances that 
fall into two adjacent intervals but do not belong to the same class. This results in an 
essential boundary set EB = {b0, …, bn}, where n < m. For example, in Fig. 3 point 
9.5 is the midpoint between transactions 11 and 12 both belonging to class X, so the 
point 9.5 is not included in set EB. The value 27 is the midpoint between feature 
value 21 (transactions 2, 10, 15) and feature value 33 (transactions 1 and 9) belonging 
to different class labels, hence 27 is added to set EB. Finally, the EB set for feature4 
is {20, 27, 38, 65.5}.  

 

 
Fig. 3. Finding essential interval boundaries (EB) of feature4 in Table 1 

From all possible division points that are tried (with replacement) in step 14, the 
algorithm chooses the division boundary that gives the highest value of the DCR 
criterion. For example, in finding the division points of feature4 the initial 
discretization scheme D4 is {[9, 95]} and the set of essential interval boundaries EB is 
{20, 27, 38, 65.5}; as shown in Fig. 3, the algorithm adds an inner boundary value 
that is not already in D4, from EB, and calculates the corresponding DCR value. The 
algorithm accepts the boundary value with the highest value of DCR, e.g., for the first 
element of EB, point 20, the new discretization scheme D4 is {[9,20], (20,95]} and the 
data in the quanta-matrix are as in Fig. 4. Thus, the DCR value of this discretization 
scheme is 4.25. 

 

 

Fig. 4. The calculation of DCR value for feature4 in Table 1 where D4 is {[9,20], (20,95]} 

For boundary points 27, 38, and 65.5, the corresponding DCR values are 3.944, 
3.41, and 4.25 resp. After all tentative additions have been tried, the point with the 
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highest DCR value (20 in this example) is added to Di in step 16. The algorithm 
assumes that every discretized attribute needs a number of intervals at least equal to 
the number of classes or that the DCR value shows improvement at each iteration, 
assuring that the discretized attribute can improve subsequent classification. Thus, the 
discretization scheme of feature4 is {[9,20], (20,27], (27,38], (38,65.5], (65.5,95]} as 
in Fig. 1(a). Step 20 creates a new training data set db by remove classifiable intervals 
as in Fig. 1(c). 

5   Experimental Results 

5.1   Experimental Set-up 

The DCR algorithm is compared with five state of the art discretization algorithms 
including two unsupervised algorithms and three supervised algorithms. The 
unsupervised algorithms are equal width (EW) [1] and equal frequency (EF) [17]; 
supervised algorithms are the CAIM [13] splitting-based discretization, ChiMerge 
[11] merging-based discretization, and a discretization algorithm in the WEKA open-
source data mining library. 

Data for the experiments consist of six well-known continuous and mixed-mode 
data sets from the UCI repository of Machine Leaning Database [3]: Iris dataset (iris), 
Ionosphere dataset (ion), New-Thyroid dataset (thy), SatImage dataset (sat), 
Waveform dataset (wav), and Heart Disease dataset (hea). Properties of the data sets 
are listed in Table 5.  

The unsupervised algorithms require the user to specify the number of discrete 
intervals. In the experiments, we set the number of intervals to be close to the number 
obtained with the DCR algorithm for purpose of comparison. 

Table 5. Properties of data sets used in experiments. 

5.2   Analysis of Results 

In the experiments, we evaluated the results in terms of number of intervals, 
execution time, and accuracy of rules generated by the C5.0 algorithm. 

Datasets Properties 
iris ion thy sat wav hea 

Number of classes 3 2 3 6 3 2 
Number of examples 150 351 215 6435 3600 270 
Number of attributes 4 34 5 36 21 13 
Number of continuous attributes 4 32 5 36 21 6 
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5.2.1   Number of intervals 

Table 6. Number of intervals for each discretization method. 

Datasets Discretization 
Method iris ion thy sat wav hea 

Rank 
mean 

EW 12 64 15 180 63 12 2.0 
EF 12 64 15 180 63 12 2.0 
CAIM 12 64 15 216 63 12 2.3 
ChiMerge 15 398 28 752 801 33 6.0 
WEKA 10 117 14 475 81 13 3.8 
DCR 9 64 14 154 62 12 1.0 

 
Table 6 shows that the DCR algorithm generated discretization scheme with the 
smallest number of intervals for all data sets. A smaller number of discrete intervals 
reduces the size of the data and helps to better understand the meaning of discretized 
attributes. This is a major advantage of the DCR algorithm. 

5.2.2   Discretization execution time 

A comparison of the discretization times is given in Table 7. We implemented all 
discretization algorithms in the same programming language, except the WEKA 
algorithm and Built-in C5.0. Thus, they were not included in the comparison. 

Table 7. Discretization execution time. 

Datasets Discretization 
Method iris ion thy sat wav hea 

Rank 
mean 

EW 0.110 3.786 0.231 1233.254 381.999 0.300 1.8 
EF 0.090 3.806 0.220 1198.744 337.575 0.320 1.5 
CAIM 2.004 77.862 4.740 2140.000 1260.000 13.489 4.3 
ChiMerge 8.362 2399.089 45.375 913.433 517.164 39.817 4.0 
DCR 0.631 14.962 1.752 1477.004 864.213 3.305 3.3 

 
The comparison of execution times shows that the unsupervised discretization 

algorithms exhibit the shortest execution times; this is to be expected since they do 
not process any class-related information. Among the supervised algorithms, DCR 
exhibited the smallest execution time for four out of six data sets, but the second 
highest execution time (after ChiMerge) for sat and wav. Still, based on average rank, 
DCR ranked fastest among the supervised algorithms. 
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5.2.3   Accuracy comparison 

The discretized data sets generated in Section 5.2.1, were used as input to C5.0 
algorithms to generate classification rules. The accuracy of the resulting classification 
rules were compared. Since C5.0 can generate data models from continuous 
attributes, we compared its performance using generated rules from raw data against 
the results achieved using discretized data produced by the six algorithms. A 10-fold 
cross-validation test was performed using all data sets: each data set was divided into 
10 parts of which nine parts were used as training data and the remaining one part as 
test data. The experiments were performed for all 10 choices of the test data. The final 
predictive accuracy was taken as the average of the 10 predictive accuracy values. 

Table 8. Comparison of the accuracies achieved by the C5.0 algorithm for six data sets using 
the seven discretization schemes. 

Datasets Discretization 
Method iris ion thy sat wav hea 

Rank mean 

EW 97.3330 90.0285 86.0465 85.9518 74.6667 75.5556 5.0 
EF 94.6667 81.7664 89.7674 85.2681 76.5000 80.0000 4.8 
CAIM 94.0000 91.4530 94.8837 85.8430 77.0000 77.4070 4.2 
ChiMerge 97.3333 92.0228 93.0233 83.3877 71.6111 76.2963 4.7 
Built-in C5.0 95.3020 90.8571 91.5888 85.9341 75.8544 78.8104 4.2 
WEKA 93.2886 94.0000 94.3925 87.5971 77.6605 81.4126 2.7 
DCR 94.6667 94.3020 96.2791 85.9518 78.7778 78.5185 2.2 
 
The DCR algorithm exhibited the highest accuracy for three of the six data sets; 

WEKA was most accurate for two datasets and nearly as accurate as DCR for three 
other data sets. 

6   Conclusions and Future work 

Experimental results comparing several discretization algorithms using standard data 
sets indicate that the DCR algorithm performs discretization with fewer intervals and 
overall lower run time while still providing classifiers with high predictive accuracy. 
On average it had the fastest run-time of all supervised algorithms. The resulting 
discretized data and classifiers were not only more compact, but resulted in high 
predictive accuracy for all six experimental data sets.  The WEKA algorithm also 
showed high predictive accuracy, but required more discretization intervals. 

In the future work, we will focus on increasing the efficiency of discretization in 
the context of mixed-mode data. Another interesting research direction is to 
investigate other measures of interestingness [14, 19] as a way of optimizing the 
attribute discretization order. 
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