
Control in the π-Calculus

[Extended Abstract]

Kohei Honda
Queen Mary

kohei@dcs.qmul.ac.uk

Nobuko Yoshida
Imperial College London

yoshida@doc.ic.ac.uk

Martin Berger
Queen Mary

martinb@dcs.qmul.ac.uk

1. INTRODUCTION
This paper presents a type-preserving translation from the call-by-
valueλµ-calculus (λµv-calculus) [23] into a typedπ-calculus, and
shows it is fully abstract up to natural consistent contextual con-
gruences in respective calculi. The full abstraction is proved via
an inverse transformation from the typedπ-terms which inhabit
the λµv-types into theλµv-calculus [23] (the so-called definabil-
ity argument), using proof techniques based on games semantics
and process calculi.

While there are different notions of control which would be rep-
resented as distinct forms of typed interactions in theπ-calculus,
surprisingly the full-control, theλµ-calculus originally introduced
by Parigot [24] and whose call-by-value version is later studied by
Ong-Stewart [23], has a particularly simple representation as a sub-
set of the linearπ-calculus introduced in [30]. Since we already
know quite a few properties about the linearπ-calculus, for exam-
ple the strong normalisability is instantly derived for the subcalcu-
lus for control from our result in [30]. A tight operational corre-
spondence assisted by the definability result, as we have shown in
this paper, would open a possibility to use typedπ-calculi as a tool
to investigate and analyse various control structures in a uniform
setting, possibly integrated with other language primitives and op-
erational structures.

In the rest of the extended abstract, we first introduce the linear
π-calculus with control, present the embedding of the call-by-value
λµ-calculus, then outlines the definability arguments. We then dis-
cuss how the definability leads to an equational full abstraction for
suitably defined behavioural equivalence for theλµ-calculus. The
extended abstract concludes with further topics and open issues on
the connection between the calculi with control and the linear/affine
typedπ-calculi [2, 3, 11, 30].

Categories and Subject Descriptors:F.3.2 [Semantics of Pro-
gramming Lanugages]:Process models

General Terms: Theory

Keywords: Types, Control, theπ-Calculus, Definability, Full Ab-
straction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

2. PROCESSES AND TYPES

2.1 Processes
Theπ-calculus used in this abstract is a subset of the standard asyn-
chronousπ-calculus [21, 20, 8]. The following gives the reduction
rule of this calculus.

x(~y).P|x〈~v〉 −→ P{~v/~y} (1)

Here~y denotes a potentially empty vectory1...yn, | denotes parallel
composition,x(~y).P is input, andx〈~v〉 is asynchronous output. Op-
erationally, this reduction represents the consumption of an asyn-
chronous message by a receptor. The idea extends to a receptor
with a replication, !x(~y).P:

! x(~y).P|x〈~v〉 −→ ! x(~y).P|P{~v/~y}, (2)

where the replicated process remains in the configuration after re-
duction. Theπ-calculus used in this abstract is the aboveπ-calculus
but without linear input prefixes: hence we only have (2) for the
main communication rule.

Types for processes prescribe usage of names. To be able to do
this with precision, it is important to control dynamic sharing of
names. For this purpose, it is useful to restrict name passing to
bound (private) name passing, where only bound names are passed
in interaction. This allows tighter control of sharing without los-
ing essential expressiveness, making it easier to administer name
usage in more stringent ways. The resulting calculus is sometimes
called the asynchronousπI-calculus in the literature [26] and has
the equivalent expressive power with the version with free name
passing (for the result in the typed setting, see [30]). In the present
study, the restriction to bound name passing leads to a clean inverse
transformation from theπ-calculus into theλµ-calculus.

Syntactically we restrict an output to the form(ν~y)(x〈~y〉|P) (where
names in~y are pairwise distinct), which we henceforth writex(~y)P.
For dynamics, we only have the rule corresponding to (2), which
now has the following form by the restriction to the bound output.

! x(~y).P|x(~y)Q −→ ! x(~y).P|(ν~y)(P|Q)

Note “x(~y)Q” indicates thatx(~y) is an asynchronous output export-
ing~y which are originally local toQ. After communication,~y are
shared betweenP andQ.

The formal grammar of the calculus is defined below.

P ::= ! x(~y).P | x(~y)P | P|Q | (νx)P | 0

Here(νx)P is name hiding and0 denotes nil. We use the standard
structure rules, denoted by≡. We leave the full definition of the
reduction and the structure rules to Appendix A.

2.2 Types and Typing for the Control
A central idea for precisely embedding functional computation in
the π-calculus is to restrict process behaviour to be adeterminis-
tic, sequentialone. To realise this idea, the following three simple
conditions are ensured by types.

1. for each name, there is a unique stateless replicated input
with zero or more dual outputs

2. channels has no circular dependency

3. only one single thread (output) can run on parallel

For example, by the first condition,

P1
def= ! b.a| ! b.c (3)

is untypable becauseb is associated to two replicators, but

P2
def= ! b.a|b| ! c.b (4)

is typable since, while output atb appears twice, replicated input at
b appears only once. Also by the second condition,

P3
def= ! b.a| ! a.b (5)

is untypable: we can easily observe if we compose messagea to the
above process, then the computation does not terminate. Finally by
the third condition, the following two processes

P4
def= a|a and P5

def= !b.(a|c) (6)

are both untypable since two threads (outputs) are/would be run-
ning on parallel. But

P6
def= !a.b| !b.c| !e.c|a (7)

is typable thoughc appears twice. The resulting typed processes
seem very restricted but sufficient to embed the full control fully
abstractly. These three conditions are guaranteed by a simple typ-
ing system which we shall introduce in the next two paragraphs.

Types.First we introduce the syntax ofchannel types. They indi-
cate possible usage of channels.

τ ::= (~τ)p p ::= ! | ?

τ,τ′, .. (resp.p, p′, ..) range over types (resp. modes). ! and ? are
calledservermode andclientmode, respectively, and they aredual
to each other. We note that this is a subset of channel types in [30]
given by taking off the linear modes. As a simple example, a type

(τ1τ2)!

means a channel with this type should be used as a replicator which
inputs two channels typed byτ1 and τ2, respectively. Then the
dual of τ is defined as the result of dualising all modes inτi . For
example,(τ1 τ2)? is a dual of the above type.md(τ) denotes the
outermost mode ofτ. To guarantee the uniqueness of the server,
we introduce the partial operation� on types generated from:

τ� τ = τ� τ = τ and τ� τ = τ with (md(τ) = ?)

This operation means that a server should be unique, but an arbi-
trary number of clients can request interactions. Note that other
composition is undefined. Hence by this law,P1 in (3) becomes
untypable. Here we also assume IO-alternation on types, i.e.τi in
(~τ)! has ?-mode and dually for(~τ)?.

(Zero)

−

`I 0. /0

(Par)

`φi Pi .Ai (i =1,2)

A1 � A2 φ1 � φ2

`φ1�φ2 P1|P2 .A1�A2

(Res)

`φ P.A

md(A(x)) = !

`φ (νx)P.A/x

(Weak) x 6∈ fn(A)
`φ P.A

md(τ) = ?

`φ P.A, x:τ

(Weak-io)

`I P.A

`O P.A

(In!) x 6∈ fn(A)
`O P.~y:~τ, ?A

`I!x(~y).P.x:(~τ)!→A

(Out?)

`I P.A~y:~τ � x:(~τ)?

`O x(~y)P.A/~y�x:(~τ)?

Figure 1: Typing for πC

To guarantee the second condition, we introduce anaction type
ranged overA,B,C.... The syntax is given as follows:

A ::= /0 | x:τ | x:(~τ1)! → y:(~τ2)? | A,B

Edges denotes dependency between channels and are used to pre-
vent vicious cycles between names. We compose two processes
typed byA andB whenA(a)�B(a) is defined for alla∈ dom(A)∩
dom(B), and a composition creates no circularity between names.
For example, a composition ofx : τ1 → y : τ2 andy : τ2 → x : τ1 is
undefined. We writeA� B if A�B is defined. By this condition,
P3 (5) become untypable.

Finally the third condition is guaranteed by attachingIO-mode,
φ ∈ {I,O}, to the typing judgement, which has the partial algebra:

I� I = I andI� O = O� I = O.

In IO-modes,O indicates a unique active output: thusO� O is unde-
fined, which means that we do not want more than one active thread
at the same time. HenceP4 andP5 in (6) are untypable. We write
φ1 � φ2 if φ1�φ2 is defined.

Typing. The judgement takes the form of

`φ P.A

which is readP has typeA with modeφ. We present the typing
system in Figure 1. The rules are obtained just by restricting the
typing system in [30] to the replicated fragment of the syntax we
are now using. The resulting typed calculus is calledπC. In the
following, we briefly illustrate each typing rule.

• In (Zero), we start inI-mode with empty type since there is
no active output.

• In (Par), “�” controls composability, ensuring that at most
one thread is active in a given term (byφ1 � φ2) and unique-
ness of replicated inputs and non-circularity (byA1 � A2).
The resulting type is given by merging two types.

• In (Res), we do not allow ? to be restricted since this action
expects its dual server always exists in the environment.A/~y
means the result of deleting types of~y from A.

• In (Weak), we can only weaken ?-moded channel since there
is possibility of no output action. Similarly for (Weak-io).

• (In!) ensures non-circularity atx (by x 6∈ fn(A)) and no free
input occurrence under input (by ?A which meansmd(A) =
{?}). Then it records the causality from input to free outputs.

• (Out?) essentially the rule composes the output prefix and
the body in parallel. In the condition,A~y:~τ means eachyi :τi
appears inA. It also changes the input mode from the output
one to indicate the active thread. Note that this rule does not
suppress the body by prefix since output is asynchronous.

The reader can check thatP2 in (4) andP6 in (7) are typed as:

`O P2 .b:()! → a:()?,c:()! → a:()?

`O P6 .a:()! → c:()?,b:()! → c:()?,e:()! → c:()?

The subject reduction ofπC is an immediate consequence of that
in [30]. Following [30], we define an extended notion of reduction,
calledthe extended reduction↘, which we shall use extensively in
the present study.↘ is given as the least compatible relation over
processes, taken modulo≡, which includes:

C[x(~y)P]|!x(~y).Q ↘r C[(ν~y)(P|Q)] | !x(~y).Q
(νx)!x(~y).Q ↘g 0

Note that↘ calculatesunderprefixes, which is unusual in process
calculi. For example, we have

P2 −→ ! b.a|a| ! c.b ↘ ! b.a|a| ! c.a

Since this is the image of extended reduction in [30] onto the
subcalculus, we immediately know:

PROPOSITION 2.1.

1. (Subject Reduction)If `φ P.A and P↘Q then`φ Q.A.

2. (CR) If P is typable and P↘Qi (i = 1,2) with Q1 6≡Q2, we
have Qi ↘+ R (i = 1,2) for some R.

3. (SN) If P is typable then P does not have infinite↘-reductions.

We also note that↘ together with the standard congruent rules pre-
cisely generate the weak bisimilarity≈, because (again) the tran-
sition relation is the faithful image of that for the pure linearπ-
calculus in [30].

Contextual Congruence.The above proposition suggests non-
deterministic state change (which plays a basic role in e.g. bisim-
ilarity and testing/failure equivalence) may safely be ignored in
typed equality, so that a Morris-like contextual equivalence suffices
as a basic equality over processes. Let us define:

P⇓x iff P→→ x(~y)Q for someQ

We can now define a typed equality. Below, a relation over typed
processes istypedif it relates only processes with identical action
type and IO-mode. A relation∼=⊇≡ is a typed congruencewhen it
is a typed equivalence closed under typed contexts.1

DEFINITION 2.2. ∼=π is the maximum typed congruence satis-
fying: if `O P∼=π Q.x:()?, then P⇓x iff Q ⇓x.

By a simple operational reasoning, we can show∼=π is maximally
consistent [9], i.e. adding any additional equation to it leads to
inconsistency.
1?-actions are not considered as observables in [30, 2] since, in-
tuitively, they do not affect the environment. But inπC we take
?-actions as observables since non-existence/existence of ?-actions
is the only sensible way to induce non-triviality in typed equality.

3. ENCODING
In this section we present a type-preserving embedding of the call-
by-valueλµ-calculus by Ong and Stewart [23] inπC. Ong and
Stewart showed various control primitives of call-by-value languages
(such as call-cc in ML) can be encoded in this calculus and its ex-
tension with recursion [23].

Types (α,β, . . .) are those of simply typedλ-calculus with the
atomic type⊥ (we can add other atomic types with appropriate in-
habitants and operations on them). We use variables (x,y, . . .) as
well as control variables, or names (a,b, . . .). We use the sequent of
the formΓ`M : α;∆ whereΓ is a finite map from variables to types
and∆ is a finite map from names to non-⊥-types. We note the se-
quent in [23] has the formΓ;∆ `M : α, which is natural from a log-
ical viewpoint. We choose the present notation because it is close
to its process representation, as we shall see soon. The typing rules
are given in Figure 2. In the rules, we assume newly introduced
names/variables in the conclusion are always fresh. The notation
Γ ·x:τ indicatesx is not in the domain ofΓ. M{z/xy} denotes the
result of substitutingz in M for bothx andy, similarly forM{c/ab}.
The reduction rules for the calculus (takingλ-abstraction and vari-
ables as values) is given in Appendix B. In the rules we include the
ηv-reduction, unlike [23]. Their inclusion or non-inclusion does
not affect the following technical development.

The encoding of types is given by two maps,α• andα◦ for α 6=
⊥, defined by the following mutual recursion. Below letα 6=⊥.

α• def= (α◦)? (α⇒β)◦ def=

{
(α◦β•)! (β 6=⊥)

(α◦)! (β =⊥)

(⊥⇒β)◦ def=

{
(β•)! (β 6=⊥)

()! (β =⊥)

The environments for names and variables are mapped as follows,

starting from/0• def= /0 and /0◦ def= /0.

(a:α·∆)• def= a:α•·∆• (x:α·Γ)◦ def=
{

x:α◦ ·Γ◦ (α 6=⊥)
Γ◦ (α =⊥)

The treatment of⊥ reflects its special role in classical natural de-
duction. The encoding of terms, which closely follows that of
types, is given in Figure 3. The encoding actually takes a typed
term Γ ` M : α ;∆ as its source, though in the rules we omit en-
vironments for brevity. Here and in later encodings, we assume
newly introduced names are always fresh.u in 〈〈M : α〉〉u is called
its principal port. We also use the following expressions.

1. x〈~y〉~τ def= x(~z)Π[zi → yi]τi with eachτi having an output mode,

2. P{x(~y)=R} def= (νx)(P| !x(~y).R).

Above in (1),[x→ y]τ is a copy-cat agent (cf. [2]), defined as:

[x→ x′](~τ)
! def= !x(~y).x′(~y′)Π[y′i → yi]τi

Note that the notation in (2) already appeared in the context of CPS
calculus [7, Remark 15]. The encoding is standard except for the
treatment if⊥-types, named terms andµ-abstraction. Intuitively,
[a]M jumps toa instead of to its principal port, whileµa.M redirects
all jumps toa to its principal port. We observe:

PROPOSITION 3.1. (type-preservation)
Γ `M :α ;∆ implies`O 〈〈M :α〉〉u . (u:α ·∆)•, Γ◦.

PROOF. By rule induction on the rules in Figure 2. The two
interesting cases,(C-var) and(C-name), are both proved by the fol-
lowing claim: If `φ P. A such that A(x) = A(y) and, moreover,

md(A(x)) = ?, then`φ P{z/xy} . A{z/xy} for fresh z. The claim
itself is by an easy induction on the rules in Figure 1.

Note both the type of the term and names (control variables) in the
λµ-calculus are mapped with()•, indicating the naturalness of the
shape of the sequentΓ ` M : α;∆ in the present context. From a
logical viewpoint, a control variable may as well be regarded as a
“negative assumption” which is waiting to become the conclusion
of a deduction when the absurdity is reached [24, 28].

It is instructive to see how the (call-by-value) call-cc is translated
into a process.

EXAMPLE 3.2. Letκ def= λy(α⇒β)⇒α.µaα.[a](y(λxα.µbβ.[a]x)).
Then we have

[[κ]]u ≈ u(c)!c(yz).y(ec)(!e(xw).z〈x〉α◦ | !c(x′).z〈x′〉α◦)

which first signals itself atu, then, when invoked with an argument
yand a return pointz, asks atywith an argumenteand a return point
c. Then whichever is invoked, it would return with the received
value to the initial return pointz.

Next we establish the correspondence in dynamics. Below→λµv
is the reduction relation onλµ-terms presented in [23].size(M) is
the size ofM, which is inductively defined as:

size(x) = 1
size(λx.M) = size(M)+1
size(MN) = size(M)+size(N)
size([a]M) = 1+size(N)
size(µa.M) = 1+size(M)

PROPOSITION 3.3. If M →λµv M′ then we have either
〈〈M :α〉〉 ≡ 〈〈M′ :α〉〉 andsize(M)
 size(M′) or 〈〈M :α〉〉u↘+P
such that〈〈M′ :α〉〉u ↘∗ P.

PROOF. See Appendix C.

COROLLARY 3.4. →λµv on λµ-terms is strongly normalising.

4. DECODING

4.1 Canonical Normal Forms
A key observation towards definability is that we can translate back
processes having the translation ofλµ-types (which we hereafter
call λµv-processes) into the originalλµ-terms. To study the decod-
ing, it is convenient to introducecanonical normal forms(CNFs)
which are essentially a subset ofλµ-terms which precisely corre-
spond to their process representation. First, preterms for CNFs,
ranged over by N, . . ., are given by the following grammar.

N ::= c | λxα.N | let x = yU in N | let = yU |
[a]U | µaα.N

U ::= c | λxα.N | µaα.[a]U,

wherec is a constant with type⊥ and we assume:

1. In [a]N, N does not have formµbβ.N′.

2. In µaα.N,

(a) if N≡ [a]U thena∈ fn(U) and

(b) if either N≡ let x = yU′ in N′ or N≡ let = yU′

thena∈ fn(U′).

3. In µaα.[a]U, the same condition as 2-(a) is assumed.

The introduction of the constant, together with the conditions on
name occurrences, are given so that there is a one-to-one corre-
spondence between CNFs andλµv-processes, as will be clarified
in the proof of Lemma 4.3 later. Using these preterms, the set of
CNFs are generated by the typing rules in Figure 2 (except the rule
for application) together with the new rules in Figure 4. Note, in
(⊥-const) in Figure 4,c, which witnesses absurdity, is introduced
only when⊥ is assumed in the environment (logically this says that
we can say an absurd thing only when the environment is absurd:
the converse is not true by the way so we are not totally excused).
CNFs correspond toλµ-terms as follows. In the first rule we as-
sumex is chosen arbitrarily from variables assigned to⊥.

(Γ·x:⊥ ` c :⊥ ;∆)∗ def= Γ·x:⊥ ` x:⊥ ;∆

(Γ ` let xβ = yU in N:γ ;∆)∗ def= Γ ` N∗{yU∗/x} :γ ;∆

(Γ ` let = yU:⊥ ;∆)∗ def= Γ ` yU∗ :⊥ ;∆

For other forms we assume the congruent mapping. Via()∗ we can
encode CNFs to processes. CNFs can also be directly encoded into
processes by the rules in Figure 5 combined with those for abstrac-
tion, naming andµ-abstraction in Figure 3. By easy calculation we
obtain:

PROPOSITION 4.1. Let Γ ` N:α ;∆. Then〈〈N∗〉〉u ↘∗ 〈N〉u 6↘.

4.2 Definability
The decoding is performed on↘-normal forms, using an inductive
generation of the setNFe of ↘-normal forms modulo≡ by the
following rules (implicitly assuming typability):

1. 0∈ NFe

2. if P,Q∈ NFe andP andQ do not share a common free name
of different polarities, thenP|Q∈ NFe

3. P∈ NFe thenx(~y).P∈ NFe, !x(~y).P∈ NFe

4. x(~y)P∈ NFe (wherex(~y)P is a prime output, i.e. the initialx
is the only free active occurrence in the term)

The decoding[P]Γ
◦;∆•

u translatesP∈ NFe such that̀ ∆• P.Γ◦ with
u 6∈ dom(Γ) to a λµ-preterm, whose rules are given in Figure 6
(dom(Γ) denotes the pre-image ofΓ). In the second rule from the
last,P〈a〉 indicatesP is a prime output with subjecta, while P〈m/a〉
is the result of replacing the (unique) active occurrence ofa in P〈a〉
with m. The map is well-defined by noting each rule decreases
the size of processes (which is indirect in the last two rules). We
observe, writingimage(Γ) for the image ofΓ:

PROPOSITION 4.2. Let ⊥ 6∈ image(Γ), u 6∈ dom(Γ) and P∈
NFe. Then` P.Γ◦ ·∆• implies, with x fresh:

1. if ∆ = ∆0 ·u:α thenΓ ·x:⊥ ` [P]Γ
◦;∆•

u :α ;∆0 and

2. if u 6∈ dom(∆) thenΓ ·x:⊥ ` [P]Γ
◦;∆•

u :⊥ ;∆0.

We can now prove:

LEMMA 4.3. If ` P.Γ◦ ·∆• ∈ NFe s.t. u6∈ dom(Γ) then
〈[P]Γ

◦;∆•
u 〉u ≡ P. Conversely, ifΓ ` N : α ;∆ s.t. u 6∈ dom(Γ) then

[〈N〉u]Γ
◦;∆•

u ≡α N.

PROOF. Let ` P. Γ◦ · ∆• ∈ NFe with u 6∈ dom(Γ). We show
〈[P]Γ

◦;∆•
u 〉u ≡ P by rule induction on rules in Figure 6. All rules

except the last two rules are immediate. In the following,P
[]u7−→Q

means an application of[]u to P results toQ. Similarly for
〈〉u7−→.

(ID)

−

Γ ·x:α ` x:α ;∆

(C-var)

Γ ·x:α ·y:α `M :α ;∆

Γ ·z:α `M{z/xy} :α ;∆

(C-name)

Γ `M :α ;∆ ·a:α ·b:α

Γ `M{c/ab} :α ;∆ ·c:α

(⇒-I)

Γ ·x:α `M :β ;∆

Γ ` λxα.M :α⇒β ;∆

(⇒-E)

Γ `M :α⇒β ;∆
Γ ` N :α ;∆

Γ `MN :β ;∆

(⊥-I)

Γ `M :α ;∆ α 6=⊥

Γ ` [a]M :⊥ ;∆ ·a:α

(⊥-E)

Γ `M :⊥ ;∆ ·a:α

Γ ` µaα.M : α ;∆

Figure 2: Typing Rules for λµ-Calculus

〈〈x : α〉〉u
def=

{
u〈x〉α◦ (α 6=⊥)
0 (α =⊥)

〈〈λxα.M : α⇒β〉〉u
def=


u(c)!c(xz).〈〈M :β〉〉z (α 6=⊥,β 6=⊥)
u(c)!c(z).〈〈M :β〉〉z (α =⊥,β 6=⊥)
u(c)!c(x).〈〈M :⊥〉〉z (α 6=⊥,β =⊥)
u(c)!c.〈〈M :⊥〉〉z (α =⊥,β =⊥)

〈〈MN : β〉〉u
def=


〈〈M :α⇒β〉〉m{m(c)=(〈〈N :α〉〉n{n(e)=c〈eu〉α◦β◦})} (α 6=⊥,β 6=⊥)

〈〈M :α⇒β〉〉m{m(c)=c〈u〉β◦} (α=⊥,β 6=⊥)
〈〈M :α⇒β〉〉m{m(c)=(〈〈N :α〉〉n{n(e)=c〈e〉α◦})} (α 6=⊥,β=⊥)
〈〈M :α⇒β〉〉m{m(c)=c} (α= β=⊥)

〈〈[a]M :⊥〉〉u
def= 〈〈M : α〉〉m{a/m}

〈〈µaα.M : α〉〉u
def= 〈〈M :⊥〉〉m{u/a}

Figure 3: Encoding of λµ-terms

(⊥-const)

−

Γ·x:⊥ ` c :⊥ ;∆

(let)

Γ·x:β ` U:γ ;∆
Γ ` yN:β ;∆ (β 6=⊥)

Γ ` let xβ = yU in N:γ ;∆

(let-⊥)

Γ ` y:α⇒⊥ ;∆
Γ ` U:α ;∆

Γ ` let = yU:⊥ ;∆

Figure 4: Typing Rules for CNFs

〈c :⊥〉u
def= 0

〈let x = yU in N:γ〉u
def=

{
y(wz)(P|!z(x).〈N:γ〉u) (U 6= c, 〈U〉c

def= c(w)P)
y(z)!z(x).〈N:γ〉u (U = c)

〈let = yU:⊥〉u
def=

{
y(w)P (U 6= c, 〈U〉c

def= c(w)P)
y (U = c)

Figure 5: Encoding of CNFs

[0]Γ
◦;∆•

u
def= c :⊥

[u(c)!c(xz).R]Γ
◦;∆•·u:(α⇒β)•

u
def= λxα.[R]Γ

◦·x:α◦;∆•·z:β•
z

[u(c)!c(z).R]Γ
◦;∆•·u:(⊥⇒β)•

u
def= λx⊥.[R]Γ

◦;∆•·z:β•
z

[u(c)!c(x).R]Γ
◦;∆•·u:(α⇒⊥)•

u
def= λxα.[R]Γ

◦·x:α◦;∆•
m

[u(c)!c.R]Γ
◦;∆•·u:(⊥⇒⊥)•

u
def= λx⊥.[R]Γ

◦;∆•
m

[y(wz)(R|!z(x).Q)]Γ
◦;∆•

u
def= let xβ= y[c(w)R]Γ

◦;∆•
c in [Q](Γ·w:β)◦;∆•

u (Γ(y)=α⇒β)

[y(z)!z(x).Q]Γ
◦;∆•

u
def= let xβ= yc in [Q](Γ·w:β)◦;∆•

u (Γ(y)=⊥⇒β)

[y(w)R]Γ
◦;∆•

u
def= let = y[c(w)P]Γ

◦;∆•
c (Γ(y)=α⇒⊥)

[y]Γ
◦;∆•

u
def= let = yc (Γ(y)=⊥⇒⊥)

[P〈a〉]Γ
◦;∆•·a:α•

u
def= [a][P〈m/a〉]Γ

◦;∆•·a:α•·m:α•
m

[P]Γ
◦;∆•·u:α•

u
def= µuα.[P]Γ

◦;∆•·u:α•
m (if no other rules apply)

We assumeα,β 6=⊥, u 6∈ fn(R) andu 6∈ dom(∆).

Figure 6: Decoding ofλµ-typed processes

For the first of the last two rule, assuming` P.Γ◦ ·∆• ·a : α•:

P〈a〉
[]u7−→ [a][P〈m/a〉]m

〈〉u7−→ 〈[P〈m/a〉]m〉m{a/m} def= (P〈m/a〉){a/m}≡P

For the second rule, we have:

P
[]u7−→ µuα.[P]m

〈〉u7−→ 〈µuα.[P]m〉u
def= 〈[P]m〉m≡ P,

as required. For the other direction, assumeΓ ` M : α ;∆ andu 6∈
dom(Γ). We show[〈N〉u]Γ

◦;∆•
u ≡α N by induction on the rules in

Figures 3 and 5. The only non-trivial cases are again named terms
andµ-abstraction. For the former, assumingΓ ` [a]U :⊥ ;∆:

[a]U:⊥ 〈〉u7−→ 〈U:α〉m{a/m} []u7−→ [a]([〈U:α〉m{a/m}])〈{m/a}〉
≡α [a]U:⊥

as required.
For µ-abstraction, we first note the side condition “if no other

rules apply” in the last rule of Figure 6 meansP in [P]Γ
◦;∆•·u:α•

u ,
satisfies one of:

(i) P≡ 0 with u∈ dom(∆);

(ii) P〈u〉 with occ(u,P)≥ 2 or

(iii) either P≡ y(wz)(R|z(x).Q) or P≡ y(w)R, with occ(u,R) =
ω.

whereocc(x,P) denotes the number of free occurrences ofx in P,
which counts free occurrences ofx in the standard way except we
setocc(x,P) = ω whenx occurs free under replication. LetΓ `
µaα.N′ : α ;∆. The cases N′

def= c and N′
def= λx.N′′, corresponding to

the conditions (i) and (ii) above, are immediate. When N′ def= [a]U
with a∈ fn(U), notinga∈ fn(U) impliesocc(a,〈[a]U〉)≥ 2,

µaα.[a]U:α
〈〉u7−→ 〈[a]U:⊥〉{u/a}
[]u7−→ µuα.[〈[a]U:⊥〉{u/a}]m
≡α µaα.[a]U:α

as required. If N′
def= let x = yU in N′ anda ∈ fn(U), we have,

notinga∈ fn(U) impliesocc(a,let x = yU in N) = ω:

(µaα.let x = yU in N) :α

〈〉u7−→ 〈(let x = yU in N) :⊥〉{u/a}
[]u7−→ µuα.[〈(let x = yU in N) :⊥〉{u/a}]m
≡α (µaα.let x = yU in N) :α

as required. The case when N′
def= let = yU with a∈ fn(U) is the

same.

Let us sayΓ`M :α ;∆ with u 6∈ dom(Γ) defines̀ P.Γ◦ ·∆• ∈NFe at
u iff 〈〈M :α〉〉u ↘∗ P. A λµ-term isclosedif it contains neither free
names nor free variables. We can now establish the definability.

THEOREM 4.4. (definability) Let̀ P . Γ◦ ·∆• ·u:α• ∈ NFe
such that⊥ 6∈ image(Γ). Then Γ · x :⊥ ` [P]u : α ; ∆ defines P.
Further if Γ = ∆ = /0 and P 6≡ 0, then there is a closedλµ-term
which defines P.

PROOF. The first half is immediate from Proposition 4.1 and
Lemma 4.3. The latter half is by inspecting by induction that the
given condition implies all occurrences of control constants can be
replaced by (bound) variables.

4.3 Full Abstraction
To prove the full abstraction, the first task is to define a suitable
observational congruence in theλµv-calculus. There can be differ-
ent notions of observational congruences for the calculus; here we
choose a large, but consistent congruence, which is motivated by
the equality induced by∼=π. It is notable that the induced congru-
ence is closely related with (and possibly coincide with some of)
the notions of equality over full controls, as studied by Laird [15,
16], Selinger [27] and others.

We first define the set of observables, which are an infinite series
of closed terms of the type⊥⇒⊥⇒⊥. To define them, we start

from the following set of terms.

W0
def= λz⊥.µu⊥⇒⊥.z

W1
def= λz⊥.µu⊥⇒⊥.[w]λz⊥.µu⊥⇒⊥.z

W2
def= λz⊥.µu⊥⇒⊥.[w]λz⊥.µu⊥⇒⊥.[w]λz⊥.µu⊥⇒⊥.z

...

Wn+1
def= λz⊥.µu⊥⇒⊥.[w]Wn .

Let γ =⊥⇒⊥⇒⊥. We then define:

Obs
def= {W0}∪{µwγ.[w]Wn+1, n∈ N}

where we take terms up to theα-equality. All terms inObs are
closed−→-normal forms of typeγ (W0 can also be writtenµw.[w]W0,
but is treated separately since the latter is not a normal form). To
illustrate the choice ofObs, we show below theπ-calculus repre-
sentations ofW0, µw.[w]W1, µw.[w]W2,

P0
def= w(c)!c(u).0

P1
def= w(c)!c(u).w(c)!c(u).0

P2
def= w(c)!c(u).w(c)!c(u).w(c)!c(u).0
...

Pn+1
def= w(c)!c(u).Pn.

By the standard context lemma for typed processes [25, 9, 2], we
can restrict the differentiating contexts for these processes to the
shape of(νw)(R | [·]) such that` R. w : γ• → a : ()?. Using
these contexts, we can easily checkP0 ∼=π P1 ∼=π P2 ∼=π . . ., i.e.
all these terms are contextually equivalent inπC. On the other
hand, a process in the same type but with a different↘-normal

form is immediately distinct modulo∼=π. For example, takeQ
def=

w(c)!c(u)u(e)!e.0. Then, withR
def= !w(c).c(u)!u.a in the context

above, we can easily seeC[Q] outputs ata, butC[Pi] does not for
any i. It is notable that all terms inObsare equated in the call-by-
value, total version of Laird’s games for control [16] (cf. [10]) and
in the call-by-value part of Selinger’s dual universe [27].

These observations motivate the following definition. Below

C[·]βΓ;α;∆ is a typed context whose hole takes a term typed asα;∆
under the baseΓ and which returns a closed term of typeβ.

DEFINITION 4.5. We writeΓ `M ∼=λµ N : α ;∆ when, for each

typed context C[]⊥⇒⊥⇒⊥
Γ;α;∆ , we have:

C[M] ⇓ L ∈Obs iff C[N] ⇓ L′ ∈Obs.

Note we treat all values inObs as an identical observable. The
following result is proved by inspecting the shape of normal forms
in theλµv-terms which are typed as̀M : γ;w:γ and which do not
own a named subterm except atw (the latter point corresponds to
eachPi never outputting except atw), using induction on the length
of terms.

LEMMA 4.6. Let` L :⊥⇒⊥⇒⊥ be a normal form such that
〈〈L〉〉w ∼=π w(c)!c(u).0. Then L∈Obs.

Further, the same routine as in [30, Section 5] gives us, via Propo-
sition 3.3:

PROPOSITION 4.7. (computational adequacy)Let M:⊥⇒⊥⇒
⊥ be closed. Then M⇓ L ∈ Obs iff 〈〈M〉〉u ↘∗ 〈〈L〉〉u such that
L ∈Obs.

By the standard argument using Lemma 4.6 and Proposition 4.7,
we obtain:

COROLLARY 4.8. (soundness)〈〈M〉〉u ∼=π 〈〈N〉〉u implies
M ∼=λµ N.

Now supposeM1 ∼=λµ M2, but 〈〈M1〉〉u 6∼=π 〈〈M2〉〉u. Then the lat-
ter’s difference is detectable by aπ-calculus typed contextC[·] of
the shape similar to the one given above, with additional abstrac-
tion for variables and names (cf. Lemma 5.1 in [30]), which can
send〈〈M1,2〉〉u to any two semantically distinct points. By Theo-
rem 4.4, we can consider this detector as an interpretations ofλµ-
terms so that we can safely set, via Lemma 4.6,〈〈C[M1]〉〉u ⇓ 〈〈L〉〉u
and〈〈C[M2]〉〉u ⇓ 〈〈L′〉〉u such thatL ∈ ObsandL′ 6∈ Obs. But this
means, by Proposition 4.7,C[M1] ⇓ L ∈ObsandC[M2] ⇓ L′ 6∈Obs,
that isM1 6∼=λµ M2, contradicting our assumption. We have now
reached the main result of the paper.

THEOREM 4.9. (full abstraction)〈〈M〉〉u ∼=π 〈〈N〉〉u if and only
if M ∼=λµ N.

5. FURTHER NOTES
This extended abstract presents the typedπ-calculus for the full
control, which arises in a simplest possible way as the calculus,
i.e. as a subcalculus of the linearπ-calculus in [30] that only uses
replicated inputs. As far as we know, the connection between the
control and theπ-calculus is first pointed out by Thielecke in his
thesis [32]. The main contribution of the present work in this con-
text is the use of duality-based type structure in theπ-calculus, by
which the embedding of control constructs in processes becomes
semantically exact. Hoping the present work can serve as a starting
point of a fruitful dialogue between the studies on control opera-
tors and those on theories of typed processes, we list a few further
topics and related works in the following.

There are a few studies (for example [27]) on conjunction and
disjunction in theλµ-calculus. By moving to classical logics, not
only negation but also these connectives (especially disjunction)
bear a new significance. The encoding can be extended to these
connectives keeping the syntax ofπC as in Section 2 (i.e. without
introducing branching and selections constructs [30]). One inter-
esting observation is that a natural encoding of the disjunction type
gives rise to an encoding of terms in processes which is directly
based on the standard idiom for representing the choice in unary
communication. In another vein, the call-by-nameλµ-calculus also
enjoys a concise encoding intoπC, regarding which we are cur-
rently working on the proof of full abstraction.

The proof techniques used for definability in Section 4 are closely
related to those used in game semantics. While we cannot discuss
in this abstract for the space sake, the induced interaction structure
(labelled transition) corresponds to those in games studied by Laird
[15]. The characterisation in terms of interaction structure of typed
processes becomes particularly useful when we consider the affine
version ofπC (whose typing rules are identical except we do not
record causality), where, due to nontermination, we can no longer
rely on a direct syntactic argument. We would be able to use such
transition-based characterisation for verifying the fully abstract em-
bedding of such languages as PCFµ and its call-by-value version.

The type structures for the linear/affineπ-calculi are based on
duality, here arising in a simplest possible way, as mutually dual
input and output modes of channel types. This duality has a di-
rect applicability for analysis of processes and programs, as can
be seen in the new flow analysis we have recently developed for
typedπ-calculi [12]. This duality allows a clean decomposition of

typed behaviours in programming languages into name passing in-
teraction, and is in close correspondence with polarity in Polarised
Linear Logic by Laurent [18, 19]. We believe the understanding
of the connection between the linear/affineπ-calculi and Polarised
Linear Logic can be further deepened usingπC. In a different con-
text, Curien and Herbelin [5] presents a calculus for control based
on Gentzen’s LK, in which a strong notion of duality elucidates the
distinction between the call-by-name and call-by-value evaluations
in the context of full control. The operational structure of their cal-
culus suggests an intriguing connection between their calculus and
typed name passing processes, for whichπC would offer a useful
starting point of study. Another question immediately arising from
the result of this paper would be a relationship between existing
CPS transformations/inversions [6, 7, 29], on the one hand, and the
encoding/decoding in Sections 3 and 4 in this paper on the other.

Finally the technical development in the present paper may sug-
gest how the typedπ-calculus can be used as a tool for analysing
fine-grained computational behaviours of controls via embedding.
This would allow us to position various findings on syntax and se-
mantics of diverse notions of control (cf. [17, 4, 32]) in a broad uni-
verse of typed name passing processes, which may lead to further
development and applications of these findings in both theoretical
and practical settings. Another interesting topic from a different
viewpoint is the study of categorical structures which can cleanly
articulateπC (and other linear/affine calculi), starting from the past
studies on semantics of controls.

Acknowledgement. The authors thank anonymous referees for
their comments and suggestions, and Pierre-Louis Curien for stim-
ulating discussions. Kohei Honda and Martin Berger are partially
supported by EPSRC grant GR/S55545. Nobuko Yoshida is par-
tially supported by EPSRC grants GR/R33465 and GR/S55538.

6. REFERENCES
[1] Abramsky, S., Jagadeesan, R. and Malacaria, P., Full

Abstraction for PCF, 1994.Info. & Comp.163 (2000),
409-470.

[2] Berger, M., Honda, K. and Yoshida, N., Sequentiality and the
π-Calculus,TLCA01, LNCS 2044, pp.29-45, Springer, 2001.

[3] Berger, M., Honda, K. and Yoshida, N., Genericity and the
π-Calculus,FoSSaCs’03, LNCS 2620, 103–119, Springer,
2003.

[4] Berdine, J., O’Hearn, P., Reddy, U. and Thielecke, H., Linear
Cotinuation Passing,Higher-Order Symbolic Computation,
15(2/3):181–208, Sep. 2002.

[5] Curien, P-L., Danvy, Herbelin, H., The Duality of
Computation. ICFP’00, ACM, 2000.

[6] Danvy, O. and Fillinski, A., Representing control: A study of
the CPS transformation, MSCS, 2(4):361–391, 1992.

[7] Führmann, C. and Thielecke, H., On the call-by-value CSP
transform and its semantics, To appear inJournal of
Information and Computation.

[8] Honda, K. and Tokoro, M. An object calculus for
asynchronous communication. ECOOP’91, LNCS 512,
133–147, 1991.

[9] Honda, K. and Yoshida, N., On Reduction-Based Process
Semantics.TCS, pp.437–486, No.151, North-Holland, 1995.

[10] Honda, K. and Yoshida, N., Game-Theoretic Analysis of
Call-by-Value Computation,TCS, Vol. 221 (1999),
North-Holland, 1999.

[11] Honda, K. and Yoshida, N., A Uniform Type Structure for
Secure Information Flow,POPL’02, 81–92, ACM Press,

2002. The full version: a DOC technical report, Imperial
College London, revised August 2003, available at:
www.doc.ic.ac.uk/˜yoshdia.

[12] Honda, K. and Yoshida, N., Noninterference through Flow
Analysis, a DOC technical report, Imperial College London,
revised September 2003, available at:
www.doc.ic.ac.uk/˜yoshdia.

[13] Honda, K. and Yoshida, N. Game-theoretic analysis of
call-by-value computation.TCS, 221 (1999), 393–456.

[14] Hyland, M. and Ong, L., Full Abstraction for PCF: I, II and
III. Info. & Comp.163 (2000), 285-408.

[15] Laird, J., Full abstraction for functional languages with
controls, LICS’97, IEEE, 1997.

[16] Laird, J.A semantic analysis of control.Phd thesis,
University of Edinburgh, 1998.

[17] Laird, J., A game semantics for linearly used continuations,
FoSSaCs’03, LNCS 2620, 313–327, Springer, 2003.

[18] Laurent, O., Polarized proof-nets andλµ-calculus,TCS,
290(1):161–188, Dec, 2002.

[19] Laurent, O., Polarized games,LICS’02, 265-274, IEEE,
2002.

[20] Milner, R., Functions as Processes,MSCS.2(2):119–141,
1992,

[21] Milner, R., Parrow, J. and Walker, D., A Calculus of Mobile
Processes,Info. & Comp.100(1):1–77, 1992.

[22] Myers, M., JFlow: Practical mostly-static information flow
control. POPL’99, 228–241, 1999.

[23] Ong, L. and Stewart, C., A Curry-Howard foundation for
functional computation with control.POPL’97, ACM, 1997.

[24] Parigot, M.,λµ-calculus: an algorithmic interpretation of
classical natural deduction. Proc.Logic Programming and
Automated Reasoning, LNCS 624, 190–201, Springer, 1992.

[25] Pierce, B.C. and Sangiorgi. D, Typing and subtyping for
mobile processes.LICS’93, pp.187–215, IEEE, 1993.

[26] Sangiorgi, D.π-calculus, internal mobility, and
agent-passing calculi.TCS, 167(2):235–271, 1996.

[27] Selinger, P., Control Category and Duality: on the
Categorical Semantics of the Lambda-Mu Calculus, MSCS
(2001), Vol. 11, 207–260, 2001.

[28] Stewart, C., On the formulae-as-types correspondence on
classical logic, PhD Thesis, Oxford, 1999.

[29] Sabry, A and Felleisen, M., Reasoning about Programs in
Continuation-Passing Style, Lisp and Symbolic Computation
6(3-4):289–360 (1993).

[30] Yoshida, N., Berger, M. and Honda, K., Strong normalisation
in theπ-Calculus,LICS’01, IEEE, 2001. The full version is
available at www.doc.ic.ac.uk/˜yoshida. To appear inJournal
of Information and Computation.

[31] Yoshida, N., Honda, K. and Berger, M. Linearity and
Bisimulation, FoSSaCs 2002, LNCS 2303, pp.417–433,
Springer, 2002. A full version as a MCS technical report,
2001-48, University of Leicester, 2001, available at
www.mcs.le.ac.uk/˜yoshida.

[32] Thielecke, H., Categorical Structure of Continuation Passing
Style, PhD thesis, University of Edinburgh, 1997.

APPENDIX

A. REDUCTION AND STRUCTURE RULES
The reduction and structure rules forπC is defined in Figure 7.

(Structural Rules)

(S0) P≡Q if P≡α Q (S1) P|0≡ P (S2) P|Q≡Q|P
(S3) P|(Q|R)≡ (P|Q)|R (S4) (νx)0≡ 0 (S5) (νx)(νy)P≡ (νy)(νx)P

(S6) (νx)(P|Q)≡ ((νx)P)|Q (x 6∈ fn(Q)) (S7) x(~y)z(~w)P≡ z(~w)x(~y)P (x,z 6∈ {~w~y})
(S8) (νz)x(~y)P≡ x(~y)(νz)P (z 6∈ {x~y}) (S9) x(~y)(P|Q)≡ (x(~y)P)|Q ({~y}∩ fn(Q) = /0)

(Reduction)

(Com!) ! x(~y).P|x(~y)Q−→! x(~y).P|(ν~y)(P|Q)

(Par) P−→ P′ =⇒ P|Q−→ P′|Q

(Res) P−→Q =⇒ (νx)P−→ (νx)Q

(Out) P−→Q =⇒ x(~y)P−→ x(~y)Q

(Cong) P≡ P′ −→Q′ ≡Q =⇒ P−→Q

Figure 7: Reduction and Structural Rules

In the last four rules, we letM
def= C[[a]Li]i∈I whereI enumerates alla-named subterms (with possible nesting) andβ 6=⊥.

(βv) (λx.M)V −→M{V/x} (ηv) λx.(Vx)−→V

(µ-β) µa.[b]M −→M{b/a} (µ-η) µa.[a]M −→M (if a 6∈ fn(M))

(ζfun) (µaα⇒β.M)N−→ µb.C[[b](LiN)]i (ζfun,⊥) (µaα⇒⊥.M)N−→C[(LiN)]i

(ζarg) Vα⇒β(µaα.M)−→ µb.C[[b](VLi)]i (ζarg,⊥) Vα⇒⊥(µaα.M)−→C[(VLi)]i

Figure 8: Reduction Rules for theλµv

B. REDUCTION FOR THE λµV-CALCULUS
The reduction rules for theλµv-calculus is given in Figure 8.

C. PROOF FOR PROPOSITION 3
In the following proof we often omit principal ports of⊥-typed
terms, observingu 6∈ 〈〈M :⊥〉〉u for eachΓ ` M :⊥ ;∆. Throughout
we assume newly introduced names are fresh.

(βv-reduction), (ηv-reduction) Omitted.

(µ-reductions)Noteµ-reductions strictly decrease a term size.

(µ-β) 〈〈[b]µa.M :⊥〉〉u ≡ (〈〈M :⊥〉〉{u/a}){b/u}
≡ 〈〈M :⊥〉〉{b/a} def= 〈〈M{b/a} :⊥〉〉.

(µ-η) 〈〈µa.[a]M :α〉〉u ≡ (〈〈M :α〉〉u{u/a}){a/u}
def= 〈〈M :α〉〉u.

(ζ-reduction) Let M
def= C[[a]Li]i∈I whereI enumerates alla-named

subterms (with possible nesting) and let〈〈M :⊥〉〉 def= C′[〈〈Li〉〉a]i ac-
cordingly. Note all free occurrences ofa in 〈〈M :⊥〉〉 are exhaus-
tively mentioned in this way. GivenC[[a]Li]i , we writeC[[b]LiN]i
(say) to indicate the result of filling each hole with a new subterm
(because of possible nesting of holes, if[..] j occurs inLi then the
corresponding subterm should also be replaced), similarly we write
C′[〈〈Li〉〉a{a(x)= R′}]. We show one case of (ζfun) [23]. The re-
maining cases are similar. Below we assumeβ 6= ⊥ and we let

eitherR
def= 〈〈N〉〉n{n(e)=c〈eu〉} (if α 6=⊥) or R

def= c〈u〉 (if α =⊥).

Further we letP1 ↘+↙ P2 denotePi ↘+ P′ (i = 1,2) for someP′.

(ζfun) 〈〈(µaα⇒β.M)N〉〉u
def= 〈〈M :⊥〉〉{m/a}{m(c)=R}
≡ 〈〈M :⊥〉〉{a(c)=R}
≡ C′[〈〈Li〉〉a]i {a(c)=R}

↘+↙ C′[〈〈Li〉〉l i{l i(c)=R}]i{u/b}
def= 〈〈µb.C[[b](LiN)]〉〉u.

Let R
def= 〈〈N〉〉n{n(e)=c〈e〉} if β 6=⊥, or R

def= c if β=⊥.

(ζfun,⊥) 〈〈(µaα⇒⊥.M)N〉〉u
def= 〈〈M :⊥〉〉{m/a}{m(c)=R}
≡ C′[〈〈Li〉〉a]i {a(c)=R}

↘+↙ C′[〈〈Li〉〉l i{l i(c)=R}]i
def= 〈〈C[(LiN)]〉〉u.

Next we consider (ζarg) rules in [23]. Letα 6= ⊥. First letβ 6= ⊥
and〈〈V :α⇒β〉〉m

def= m(c)!c(e′u′).RandR′
def= R{eu/e′u′}. Noting

m 6∈ fn(R) by V being a value, we have, with+↙ denoting the
inverse of↘+:

(ζarg) 〈〈V(µaα.M)〉〉u ↘+ 〈〈M :⊥〉〉{a(e)=R′}
↘+↙ C′[〈〈Li〉〉a{a(e)=R′})]i
+↙ 〈〈C[[b](VLi)]i :⊥〉〉{u/b}
def= 〈〈µb.C[[b](VLi)]〉〉u.

Finally with 〈〈V :α⇒⊥〉〉m
def= m(c)!c(e′).RandR′

def= R{e/e′},

(ζarg,⊥) 〈〈V(µaα.M)〉〉 ↘+↙ C′[〈〈Li〉〉a{a(e)=R′})]i
+↙ 〈〈C[(VLi)]i :⊥〉〉,

as required.

