Buiiding Data-Driven Applications Using the SAS® Applications System: Selected Techniques
Staff of SAS Consulting Services Inc., Rockville, MD

ABSTRACT

This tutoriai describes a system architecture by which an application
can be maintained and enhanced through changes to data and
parameter files. An application designed this way allows for more
flexibility and lower maintenance than one in which code is written
to perform specific functions. The generalized code in a data-driven
system performs under the direction of parameters, allowing any
changes to be implemented by altering values in parameter files
instead of changing the source code. Examples inciude such cases
as

+ adding new reports
+ changing or reordering menu items

« controling user access and security.

Sample programs that make use of SAS/AF® and SAS/FSP® soft-
ware using Screen Control Language(SCL}, the SQL procedure,
and the SAS macro facility are presented and described in detail.

Because the data-driven approach can be adapted to a wide variety
of data-processing tasks involving varying degrees of complexity,
the techniques presented here merit attention as models which may
suggest solutions 1o many system design problems.

INTRODUCTION

The primary objective of application developers is to build fexible
and easily maintained systems. One good way to accomplish this
is through the use of a data-driven architecture, for which the SAS
System is ideally suited.

Central to the data-driven approach is the idea that a system can
be designed o allow modification or expansion by changing items
in data sets instead of altering program source code. Data-driven
features can be utilized at all levels of an application, from formatting
items in a report to making additional functional components avail-
able to the user. With a system that follows such design principles,
a user with no programming knowledge can readily customize and
enhance the application.

The following sections develop progressively the data-driven con-
cept, illustrating topics with applicable code fragments and short
listings of data sets. “SAMPLE DATA" introduces & sample data-
base which is used throughout the text, initiating the data-driven dis-
cussion with a simple use of PROC FQRMAT. ‘REPORTING”
demonstrates how SAS tools (particularly PROC SQL in conjunction
with the macro facility) can be used to aggregate data for a report,
applying user-specified report definitions which are maintained in a
data set. This topic is further developed in "MACRO LOOPING”,
automating the generation of code with the use of macro looping.
“MAINTAINING MENUS” shows how the tools available in SAS/AF
and SAS/FSP software can be used to build a data-driven user inter-
face which can be customized and enhanced by the end-user.
Together, these topics present a comprehensive overview of data-
driven techniques that can be used in aimost any SAS application.

Throughout this tutorial, we refer to data files that drive the applica-
tion as parameter files, because values in these data sets are
passed as parameters to program entries, SAS macro routines, or

SAS procedures, thereby controlfing the execution of the applica-
tion. o

SAMPLE DATA

As an example, a simplified database has been created for GIZMO
Manufacturing. The database consists of two SAS data libraries; -
one contains the actual application data and the other contains the
parameter files that drive the system. The application data library
has only gne SAS data set, INVENTRY, representing the current
inventory, and containing the variables QUANTITY, PRODUCT, and
WHSECODE. The variable QUANTITY contains the number of
boxes of the product. The PRODUCT is the product code for the
product. The WHSECOQDE is the code for the warehouse where the
product is stored while awaiting distribution. Table 1 shows sample
data from this file.

Table 1 Sample Data from the INVENTRY Data Set

Product Warehouse
Code Code Quantity
Al12 20 109
A2 10 43
A30 30 37
B39 50 17
B48 20 128
B57 30 3
B66 20 13
C75 20 149
ca4 , 50 150
Cca3 10 188

The second library contains the parameter files that the system uses
to perform certain tasks. The parameter file library contains the
PRODUCTS file, consisting of product code, a product description,
the cost per box, and the price per box. A second file, the
WAREHSE data set, consists of the warehouse codes and the
warehouse description. These data sets are shown in Tables 2 and
3. These parameter files are used to create CNTLIN data sets for
use in a PROC FORMAT step to output the necessary formats for
reporting. Other parameter files will be discussed later.

Table 2 Sample Data from the PRODUCTS Data Set

Product Product Description Unit Cost Unit Price
Al2 STRANGE WIDGET 1.62 1.89
A1 MEDIUM WIDGET 0.20 0.23
A30 SMALL WIDGET 1.14 1.33
B39 ROUND GADGET 0.32 0.37
B48 TRIANGULAR GADGET 1.90 2.22
B57 CHARTREUSE GADGET 1.96 2.29
B66 FUCHSIA GADGET 0.92 1.07
C75 LAVENDER 0.68 0.79
THINGAMAJIG

cB4 ORDINARY . 1.68 1.96
THINGAMANG

[9::X) SPECIAL THINGAMAJIG 0.88 . 1.03

Tabte 3 Sample Data from the WAREHSE Data Set

Warehouse Description Warehouse Code
NORTHEAST 10
MID ATLANTIC 20
ROCKY MOUNTAIN 30
MID WEST 40
SOUTHERN 50

The following code is an example of a PROC FORMAT step using
a CNTLIN data set.

data makefmt;
set parms.warehse;
rename whsecode=start;
rename desc=label;
type = 'C';
fmtnamesrfwarehses;

ran;

proc format cntlin=work.makefmt;
run;

REPORTING

Producing reports is an important aspect of any data processing
project, and there are many tools available within the SAS System
to accomplish this. These tools include the PRINT, REPORT,
TABULATE, and SQL procedures, among others. The usefulness
of these tools can be expanded through the use of data-driver archi-
tecture. Parameter files are used to define the reports.

Consider the following examptes using the INVENTRY data
described previously:

1. The manager of the Widget Division needs a report to help
him manage a reorganization of the product lines. He is
assuming responsibility for the “STRANGE” line and will no
longer be responsible for CHARTREUSE WIDGETS. The
report should contain QUANTITY, the tofal cost of the
inventory (the sum of UNITCOST), the total value of the
inventory (the sum of UNITPRC), and will contain four fines

- of numbers. The first line is the total number of widgets
{the PRODUCT code begins with an A). The second fine is
the total number of STRANGE GADGETS (B12) and
STRANGE THINGAMAUJIGS (C12). The third line is the
number of CHARTREUSE WIDGETS {Ab7}. And, finally, the
last line is the total of fines 1 and 2 minus line 3.

2. Another manager needs a similar report. Line 1 is the total
number of GADGETS and THINGAMAJIGS, line 2 is the
number of CHARTREUSE WIDGETS, and line 3 is the total
of these two lines.

There are many other managers who have similar reporting needs
and we do not want to write, test, and maintain separate report pro-
grams for each request.

Instead of creating a separate report program for each of these
cases, we can define a single reporting program that uses parame-
ter files 10 define the data aggregation. The data set in Table 4,
PARMS.REPTLINE, defines all the aggregations for both reports
described above. The variable REPTID identifies the report to which
each LINE belongs; the variable LINE specifies how to aggregate
the lines together and control the order of the lines in the report;
the variable PRODUCGT indicaies the PRODUCT codes to include;
and, the variable FACTOR is used to control addition, subtraction,
discounts, and so on.

245

Table 4 Report Definition Parameter File

REPTID LINE PRODUCT FACTOR
WIDGET1 1 A 1
WIDGET1 2 B12 1
WIDGET1 2 ci2 1
WIDGET1 3 A7 1
WIDGET1 4 A 1
WIDGET1 4 B12 . 1
WIDGET1 4 ;12 1
WIDGET 4 AS57 —1
GADTHNG 1 B 1
GADTHNG 1 C i
GADTHNG 2 AE7 1
GADTHNG 3 B 1
GADTHNG 3 C 1
GADTHNG 3 A7 1

The following SQL code can be used to produce our report, Our
report program is implemented as a macro so that we can pass in
the desired REPTID as a parameter and readily use the code else-
where in our application. We can also pass in the report title using
the macro parameter TITLE.

fmacro réport(reptids= titles=j;=

AEXERANEER AR ERFERRL RN TR AR R R R TR AR RS A bR b B bR R bR bbb d ks

g*Sample report program that uses a parameter file and PROC SQL to
§*do the data aggregation and produce the actval repart
REv * tt*kt*?tt#**it!*#l#*tt*lt!*!*!i!*'#‘t!#!

L2222

proc sql;
title ngtikler;
select line,
sum{quantity3facter) as quantity,
sum{quantity*factor*unitcost} as inv_cost format=dollari(.
sum{quantity*factor*unitprc) as inv_valu format=dollar1§.2
from parms.reptline r,
widget.inventry i,
parms.products p
where r.product = substr{i.product, 1, length{r.product))
and i.product = p.product
and r.reptid = «§reptidr
group by line;
quit;
Smend report;

The macro call, sreport{reptid=WIDGET1,title=Sample
Report for WIDGET1}, produces the output in Output 1.

sample Report for WIDGET!

LINE QUANTITY IBV_LOST IHV_SALY

1 8105 $6,89L.22
2 1522 4875.58
3 SU96.50
u

$7.283.20

£2,039.45
£1,018.80

8564.34
$8,093.91

m
BES5

Output 1 Sample Report for WIDGET1

.

:
'

1
X
i
¥

2r

The output shown in Output 1 does not have meaningful labels for
the report rows. By adding another parameter file,
PARMS.LINETEXT, containing one observation foreach fine ineach
report, we can provide a description for each report line (See
Table 5).

Table 5 Parameter File of Line Definition Text

REPTID LiINE TEXT

WIDGET1 1 All Widgets
WIDGET 2 “Other” Strange
WIDGET1 3 Chartreuse Widgets
WIDGET1 4 My New Products

The updated macro, with changes underlined, follows:

tmacro repert{reptid= titlex};

S EEd ittt e EE LT) dEbkkkNER
%*5ample repert program that uses a parameter file and FROC 3SQL teo
%*do the data aggregation and produce the actual report

FEL 2 T eny (LT

prec sqi;
title netitlex;
select text
sum{quantity*factor) as quantity,

sum{quantity*factorsunitcost) as inv_c¢ost format=dsollar10.2,

sum{quantity*factor*unitpre) as inv_valu format=dellartd.2
from parms.reptline r,
widget.inventry i,
parmg, products p,
parms.linetext 1
where r.product = substr{i.product,k 1, length(r.product)}
and i.product = p.product
and r.reptid = vgreptidn
and r.line = l.line
group by r,line, l.text;
quit;

{mend report;

The macro call sreport{reptid=WIDGET!,title=5ample
Report for WIDGET1) now produces the output in Out-
put 2.

Sample Heport for WIDGET!

TEXT QUANTITY THV_LOST INV.VALY
ALl Widgety 8105 §6 E98.22 $8,019.45
nOthaczn ftrange 1522 3875.59 $1,018.80
Chartreuse Widgets 973 J486.50 $5hH. 3%
My Hew Products 8654 8T,283.32 ¥B,893.91

Output 2 Sample Report for WIDGET1

Note the use of the SUBSTR function in the SQL WHERE clause.
Although the current version of the SQL procedure does not support
truncated comparisons using the SAS =: operator, we can obtain
the equivalent results by truncating the longer expression to the
length of the shorter one before comparing them.

We have developed a mechanism that can produce any report of
this nature. Ali that is required is a straightforward SQL program

RS R R ERE RSP IL2 22 2L 2)
.
*
FEERFRRSERREREFRRR AR E SR SR AL AR L -

246

and two parameter files. The SQL procedure is a very powerful data
management and reporting facility that can be used to add even
more capabilities to our reporting application. For example, the logic
shown here uses a simple aggregation based on a selection using
a single key variable. We could use a variety of other comparison
and WHERE operators that the SQL procedure supports to do other
types of selection or aggregation, such as using multipte key vari-
ables 1o define the aggregation. This method can be used iteratively
50 that the results of a step can be used for later aggregations {ior
example, once line 2 is defined, it can be used directly in the defini-
tion of line 4). The level of sophistication of the methed used to
select and aggregate data is almost unfimited. We could use the
SQL procedure to create data sets or views that are passed to other
procedures or DATA steps to preduce the desired output. Refer to
the SAS Guide to the SQL Procedure: Usage and Reference, Version
8, First Edition for more information on the capabilities of PROG
SaL.

MACRO LOOPING

Using the macro language to generate data-dependent SAS code
is also a valuable technigque. In our example, we need to run the
REPORT macro for each value of REPTID in the report definition
parameter file described in the preceding section. We need a data-
driven approach so that as new report definitions are added to the
file, the new reports will be generated automatically. :

We first need to create a list of uniqgue REPTID values. We will do
this by reading an SQL view of unique REPTIDs from the report defi-
nition parameter file, PARMS.REPTLINE. The SQL code to create
such a view follows. Since the view is permanently stored, the SQL
code only needs to be run one time, not every time the reports are
generated.
proc sql;
create view parms.runrpts as

select distinct(reptid) from parms.reptline;
quit;

For each observation read from this view, we create a macro vari-
able with a standard prefix for the name and a uniquely numbered
suffix. For example, the DATA step that follows creates a series of
macro variables, RPT1 through RPTn where n is the number of
REPTID values to be processed. The value of each macro variable
is a different REPTID value,

After we run the DATA step shown in the macro RUNRPTS, we
have a list of REPTID values that we need to process. Next we want
to cali our report macro once for each REPTID. We do this by calling
the macro inside the iterative %DO loop. Note that the statements
%D0 and %END can only be used inside of a macro.

fmacro runrpts;

/% Code to create list of macro variables RPT1-RPTn.
data _null ;

/% read view: unigue list of report ID values
get parms.runrpts end=lastrec;

/% Create one macro var for each obs. For infermation on SYMPUT
/% gsee SAS Guide to Macro Processing, Version 6, Second Edition
/% page 165 »5YMPUT Reoutine.n

call symput('RPT' {| left(put{_n_,5.)), reptid);

/% at end create a macro var that teils how many we craated
if lastrec then call symput{'M',6 left{put(_n_5.}));

Tuh;

.

s/

*/

*/

*/

*/

/% Loop through the list of report IDs and catl the report macro */
/% once for each value. . */

/# The loop index I is a macro variable and should be made local */
%local i;

%do i=1 gto in;
/% Note the reference below is Scanned twice during resolution.*/
/% The first time 4§ resolves to £, RFT is treated as constankt */
/% text, and §I resclves to the current index value. The second+/
/% time we are actually resolviog SRPTn to a report ID value. */
/% See SAS Guide to Macro Processing, Versicn &, Second Edition*/

/% paqe 36 »Scanning Macro Variable Referenceg,n»

Areport(reptid= §8rptéi, title=rReport for (ERFTEi» };

fend;

Amend runzpis;

Any time we want to run all of the reports defined by the report defi-
nition parameter file, we invoke the RUNRPTS macro. The macro
will use the RUNAPTS view to get a list of what reports to run,
create a macro variable for each report ID, and then call the
REPORT macro for each report ID by referencing these macro vari-
ables.

MAINTAINING MENUS

The application should also allow the end-users to interactively
sélect any specific report from a menu. In addition, users should be
able to update the report list without having to modify program
code. The SAS System provides many tools to create selection ksts,
such as MENU and PROGRAM entries in SAS/AF software and
functions within Screen Control Language (SCL), available in both
SAS/AF and SAS/FSP software.

Using MENU entries, the programmer builds menus that provide a
list of selections to users. Chosen selections are accessed through
additional MENU entries and PROGRAM entries that navigate the
user through the application. A MENU entry is a hard-coded option
to process a selection. This requires a developer to modrfy the appii-
cation in order to add or delete sefections.

PROGRAM entries are a powerful and versatile tool for building
menus. SCL code directs the execution of the user’s choice. There
are several ways that a PROGRAM entry can be used as a menu,
utikzing functions available in SCL and the attributes associated
with the entry. For example, the BLOCK function can be used o
display a menu (such as those in SAS/ASSIST" software) containing
choice biocks with labels identifying the functional pieces of the
application. However, the BLOCK function is lmited to only 12
choices. Alternatively, a dynamic menu can be created by using an
extended table, a special type of PROGRAM entry that allows the
developer to repeat a set of fields defined in the display window.,
In a typical application using extended tables, SCL is written to pro-
cess each row of the table, corresponding to an observation from
a data set. This use of extended tables as menus is critical to data-
driven applications development.

Selecting a Report

An extended table allows the user the flexibility of presenting a list
of selections which are values within a data set (See Display 1).

xf

247

System Main Heou
command sw=>

Report List
Command ===

ection and Press Enter to Select

Selact a Report
Oata Entry
GROTHNG
WICGET1

anage Tables
Reporting
SAS/A4SYST

Exit System

Display 1 A Display Containing the RHeport List

The following code uses the VIEW described in the section
“MACRO LOOPING” to build a selection list displaying the REPTID
values.

INIT:
dsid = open(‘parms.runrpts’); /* open rept view */
call setrew(attrn(dsid, 'NLOBS'), 1," ',"N"};
call set(dsid);

return;

GETROW: -
rc=fetchobs{dsid, currov_);
return;

PUTROW
submit continue;
freport(reptid=greptid,
title=Report For Ereptid)
endsubmit;
Ic = unselect{_rcurrow_); /* unselect selected options/
return;

HAIN:
return;

TERM:
dsid =
return;

close(dsid);

The advantage of using the parameter file from the section
“REPORTING" is that there are fewer data sets to maintain. How-
ever, the user will have to select from a fist that may not be very
descriptive. A parameter file of reports with a report description vari-
able would improve the appearance of the table. The data set in
Table € can be used as a parameter file to define the selections in
an extended table. The variable REPTID specifies the unique report
name. REPTDESC specifies the text that will appear on the menu.
ORDER specifies the sort order of the items in the list. The data
set will have a uniquely defined index on REPTID.

Table 6 Report List Parameter File

REPTID REPTDESC ORDER
WIDGET? The First Widget Report 10
GADTHING The Gadget Report 20
OTHER Another Report 30

To present the data set in Table 6 in an extended table, the only
change in the SCL code shown previously is tiie name of the data
set passed to the OPEN function. The variable REPTDESC must
also be added to the display. Its value can be passed to the report
macro as the value of the TITLE parameter,

Through the use of extended tables, we have amachanism by which
we can have a list of reports stored in a data set. By editing that
data set, we can maintain the report choices without modifying the
source code.

Maintaining the Parameter Files That Drive the System

As we have seen, a data-driven approach to applications develop-
ment has many advantages, the most important of which is the abil-
ity to change the application easily and quickly. To add a new report
to the system, add an observation to the data set containing the
list of the reports; to add a new line to a report, add observations
to the report definition data set. Although changes such as these
are not difficult to do on an ad-hoc basis (for example, by using
PROC FSEDIT), the file maintenance alsc can be managed within
the application by using data-driven methods.

in the previous section, an extended tabfe was used to display a
list of available reports. This technique can also be used to maintain
the parameter files. A data set is created, containing a list of all of
the data sets that control the system. An extended table is used
to display this list of parameter files, allowing users to select the
parameter file they wish to edit or modify. When a manager needs
to change a subtotal calculation, the PARMS.REPTLINE data set
is selected, and the appropriate observations are modified. When
the user adds functionality that requires another parameter file, an
observation is added to the PARMS.PARMUIST data set, which
allows easy access to the file in the future.

Once the user has made a selection from the extended table, the
system uses the other information in the PARMS.PARMLIST data
set to determine what to do. For many parameter files, calling PROC
FSEDIT with a custom screen may be sufficient. Other files may be
more complicated and may require calling a special SAS/AF
PROGRAM entry, written 10 handie the editing. Output 3 shows a
portion of our PARMS.PARMLIST data set.

AP Hodnle Name of
Parameter File Called to BY variahles Format to
Data Set Rame Process File for Sert Create
PBARMS . FRODUCTS PRODUCT
PARME .WAREHSE WHSECODE
PARMS.REPTLIMNE REFTID LINE PRODUCT
PARMS, LINFTEXT REPTID LINF
PARMS . MEHULIST ENTRY PROGHAM DRDER
PARMS, PARMLIST EDITEARN ORDER DATASET

Lakel
Variable

TValue
variable FKey Varlables

Is the Shonld

Indax Index Include

for Format for Format for Index Kame Unique? Missing

PRODUCT PRODUCT Y

WHSECOUB WHSECODE Y

REPTID LINE PRODUCT _TNDEX ¥

REPTID LINE —INDEX ¥

DATASET DATASET b4

Order as
Libraf for Sean in

Description Diaplayed Sort Formal Displayed
to User Options Library List
Valid Products FORCE 1
Valid Warehousas FORCE 2
Report Defimition Data Set 20
Report Line Text 40
List of Menu Options 930
Paraneter Files FORCE 999

Output 3 Labeled Printout of PARMS PARMLUIST Data Set

248

The following code fragment from the PUTROW section shows the
SCL required to call the editing module.

te=fetchobs{dsid, currow_j;

if module eq » v then
do; /% no program emtry specified */

call fsedit{dataset, 'SYSTEM.SCREENS.'llscanidataset, 2,'.')};

end;/* no program entry specified #/

else

do; /* call special edit program entry */

call display{trim{module]|!'.PROGRAM" dsid};

end;/+ call special edit program emtry */
There are several common tasks that may need to be performed
for a parameter file. For example, parameter files will often need to
be sorted, indexed, or used to create formats. To handle these com-
mon tasks without needing a speciat entry for each parameter data
set, variables can be added to the PARMS PARMLIST data set and
SCL code added to the PARMLIST entry. In the following code frag-

ment, the SORTVAR variable is used 1o indicate the variables on
which to sort the data set.

if sortvars me » o then
do; /% sort variables are specified#s

. sortdsid = openi{dataset,'U');

if sortdsid gt ¢ then.
do; /#data set opened*/

rce=sort(sortdsid, gortvarg, »/»|sortopts);

if rc ne then
do; /+¥gort failed */

/*zode to handle ERROR massages*/
end;/*sort failed %/
sortdsid=close{scrtdsid);

end; /¥data set ocpened®/
else
de; /*open failed #/
/*cade tg handle ERROR messagas#/

end;/*open failed %/

end; /* sort variables are specified*/

To create a format from a parameter data set, the user would spec-
ify VALUEVAR and LABELVAR variables, and the entry would sub-
mit SAS code to create the format. Additional variables are used
to specify the format's name and type. The following code fragment
shows how the format is created. An SQL view is created and used
as a CNTLIN data set to PROC FORMAT.

if fmtname ne » * then
do; /% create a fcrmat from parm data sets/

replaﬁe fmtlib 'library=lib';
submit sql continoe;

create view makefmt as

select £labelvar as label,
§valuevar as start,
‘ifmtname' as fmtname,
‘éfmttype' as type

from idataset;

endsubmit;

if symgetn{*SQLRC'} eq 0 then
do; /#5QL view created*/

submit continue;

proc format cntlin=work.makefmt &fmtlib;
Tun;

endsubmit ;

if symgetn{'SYSERR") ne 0 then
do; /+PROC step failed+#/

/%code to handle problems with PROC FORMAT step*/
end; /¥PROC step faileds/
end; /¥#5QL view createds/
else
do; /#8QL step failed */
/*code to handle problems with $QL view creation*/
end; /#*SQL step failed#/

end; /¥ create a format from parm data set*/

The SCL code fragment that follows shows how an index is created
for a parameter data set. The user specifies INDEXVAR, the variable
list used to create the index, and can specify additional variables
to indicate whether each index variable is unique and whether to
include missing values. The UNIQUE option is a convenient way to
prevent the user from adding duplicate observations.

if indexvar ne = = then
do; /% create a simple index for parm data set*/

indgdsid=open{dataset 'V']);/*0Open data sel in UTILITY mode#/

if indxdsid gt ¢ then
do; /#data set opened*/

if upcase(unique} eq *Yr then opticns =
else options = "/RONUNIQUE";

W/ URIQUE" +
if upcaseimissings) eq "Y* then gptions =
else options = options!|» NOMISS«;

rc=icreate{indxdsid, iname indexvar,options);

if re ne 0. .then
do; /*index creation failed */

/¥code to handle problems creating index*/
end; r*index creation failed */
indzdsid=close(indxdsid);

end; /*data sei openedx/
else
do; /%open failed */

/*code to handla problems opening data set#/

end; /¥open failed */

/
end; /* create a simple index for parm data set*/

Only those files that require sorting, formatting, or indexing have
values specified for the corresponding variables.

If the user wants to edit the PARMS.PARMLUIST data set, it must
be closed first. The following code fragment is SCL code for the
EDITPARM program entry, called by the PARMLIST program entry
to handle this editing.

options| !+ MISSIKG»;

249

entry dsid 8

¢

length dataset 3§ 17;

INIT:
dataset=dsname(dsid);

dsid=close(dsid);
call fsedit(dataset "SYSTEM.SCREENS.|Iscan{dataset, 2,'."1};

return;

Again we have illustrated a data-driven approach, using data sets
to drive the entire parameter file maintenance system, to control the
editing of the parameter files, and to determine whether to sort a
data set and create formats or indexes. In fact, the very data set
that is used to control the parameter file maintenance component
is itself one of the data sets maintained through the application.

Building Dynamic Menus

We can extend the concept further by developing a generic
extended table that displays menu choices. The implementation of
such a routine uses the techniques described above. We simply add
another parameter file containing the menu choices and controt
information for each menu the user sees. The menu shown in Dis-
play 2 is a sample main menu for our application. We control the
contents of this menu by editing a data set.

rSystem Main Menu

Command ===>
-

Please Tab te Your Selection and Press Enter to Salect

Data Entry
Hanage Tables
Reparting
SAS/ASSIST

Exit System

Display 2 Sample Main Menu for Application

CONCLUSION

As we have seen, a data-driven approach is an elegant solution that
provides flexibility and maintainability. A data-driven mechanism is
appropriate to many programming tasks. For those situations where
it can be appiied, it will be possible for the user to make a variety
of functional changes to the system without altering a single line of
source code. Of course, any major new functional requirements may
necessitate the addition of new macro routines or program entries.
Developers who are in the habit of hard-coding extensive program
logic should carefully consider the alternative of a data-driven
approach as a better solution.

ACKNOWLEDGMENTS

The following staff members of SAS Consulting Services Inc. con-
tributed to the preparation of this paper:

Donald J. Henderson Robina G. Thomton
Martha F. Johnson Phit H. Van Dusen
Merry G. Rabb C. Jessica Yuan
David S. Septoff

Norman Shusterman

Gregory A. Smith

250

SAS, SASIAF, SASIASSIST, and SAS/FSP are registered trade-
marks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trade-
marks of their respective companies.

