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ABSTRACT
XML is a standard format for data exchange and it is well
suited to represent internet applications because of its text-
based format. However, this flexibility means that it incurs
higher data processing overhead than ordinary data formats.
In this paper, we propose a high-performance XML pro-
cessing method using a novel pattern recognition algorithm
based on a grammar compression algorithm. In the method,
training XML documents are pre-analyzed in order to de-
tect frequently appearing constructs in the document. The
extended XML parser uses the results of the pre-analysis
to make its parsing faster with speculative input matching.
The results of experiments show that the proposed method
improves the performance of XML parsing by up to 182%
(146% on average) compared with an ordinary SAX parser
with namespace processing under the condition that the tar-
get XML documents are similar to the pre-analyzed XML
documents.

1. INTRODUCTION
Fixed format data was commonly used for data exchange
in the past, but the inflexibility of such format sometimes
causes problems with data/program updates and data ex-
changes over a network. The Extensible Markup Language
(XML) [5] is widely used as a standard data exchange format
to cope with these problems.

XML adopts semi-structured data by representing data with
tags and literal texts. Because XML data makes it easier to
identify the contents from tags, its data representation is
more flexible than those of traditional data formats. A hier-
archical data structure can be represented with nested tags.
Because of these features, XML has been widely adopted
in many areas such as a means of complex software con-
figuration, SOAP [27] and other internet data formats. Its
popularity has led to a large demand for faster XML data
processing. Because XML data is represented in text format,

separation of tags and literal texts and analysis of its hier-
archical structure are needed. This processing is performed
by an XML parser. Document Object Model (DOM) [26]
based methods and Simple API for XML (SAX) [16] based
methods are standard tools for parsing XML data.

DOM employs a model that operates on a tree-like struc-
ture converted from XML data. In contrast, SAX employs
an event-based model that associates user-defined event han-
dler with the elements of input XML data. The event han-
dler is invoked in response to the inputs of the correspond-
ing elements. The time and space efficiencies of the DOM
parser are lower than those of the SAX parser because of
the overhead of translating an input text into an internal
data structure. Programming the SAX parser, in contrast,
is more difficult than programming the DOM parser because
it does not directly recognize the hierarchical structure of
XML data.

In this paper, we describe a fast parsing method of XML
data for a SAX-style event-based parser. In the method,
training XML documents are pre-analyzed in order to de-
tect frequently appearing constructs in the documents. The
XML parser then uses the results of the pre-analysis to make
its parsing faster with predictive input matching.

A simple example of XML data is shown in Figure 1. A
text between ‘<’ and ‘>’ represents a start tag, and a text
between ‘</’ and ‘>’ represents an end tag. A text between
a start tag and an end tag represents a literal data. The
XML parser must recognize each syntactic element in the
document.

The parsing model used by the SAX parser defines events
for each syntactic element in an XML document. An event
handler is defined to deal with events caused by the recog-
nition of the corresponding syntactic elements. Thus, the
parsing model is defined by the event sequences correspond-
ing to the input XML string. A typical SAX parsing process
is as follows:

1. Read XML document string from a file or other input
device.

2. Break the input string into tokens; validations such as
checking input character set are performed in this step.



<items>

<item>

<name>item0</name><price>100</price>

</item>

<item>

<name>item1</name><price>150</price>

</item>

<item>

<name>item2</name><price>50</price>

</item>

<item>

<name>item3</name><price>800</price>

</item>

</items>

Figure 1: Example XML document

3. Construct argument data for the event handler.

4. Invoke the event handler.

In the ordinary SAX parser architecture, an XML input
string is divided into tokens and the event handler is called
for each input event. The ordinary parser has runtime over-
heads such as validating input character set or constructing
the parameters of the event handlers.

We can replace the token generation and the validation ac-
tivities in step 2 with simple matching of the input character
sequence if the next input token can be predicted. We can
also replace the event handler arguments constructed on-
demand with pre-allocated data. These optimizations can
lead to faster XML document analysis. Because input XML
data are usually similar in each application area, we can ex-
pect performance improvements as a result of pre-analyzing
typical XML data and recognizing frequently occurring pat-
terns in the documents.

In this paper, we propose a novel algorithm for recognizing
frequent patterns that uses a grammar-based data compres-
sion method. The algorithm converts training XML doc-
uments into hierarchical grammar representation then ex-
tracts frequent patterns. For example, we can see from the
XML document of Figure 1 that the following repetition
pattern

<item>

<name> . . . </name><price> . . . </price>
</item>

follows the grammar rule:

A → { <item>. . . <name>. . . </name>. . . </item>. . . }*

By using the grammar-based extraction of frequent pat-
terns, we can capture the structure of the original XML
data and apply optimizations based on grammar transfor-
mations. Since it does not require well-formed XML schema,
it is more easy to use than syntax-directed parsing methods
based on XML schema.

The architecture of the XML parser is shown in Figure 2.
The parser consists of an execution phase and a learning
phase. The execution phase contains an ordinary parser
and a custom parser. The learning phase analyzes train-
ing XML documents to recognize frequent patterns in XML
documents. The custom parser is specialized for each pat-
tern recognized as frequent in the learning phase. Initially,
the execution phase loads the custom parser before pars-
ing and starts the ordinary parser. If the input character
is a start character of the matching pattern, the control is
transferred from the ordinary parser to the custom parser.
Because the custom parser speculatively analyzes the input
XML documents, we can expect performance improvements
by using simple automaton-based input matching and some
kind of partial evaluation [21]. For example, tokenization of
the input string can be replaced by simple character match-
ing against predicted input, and the overhead for allocating
the internal data structure for processing SAX events can
be avoided. If the input symbol does not match the pat-
tern, the custom parser abort the processing of the symbol
and the ordinary parser resumes the execution at the sym-
bol. Our experimental implementation converts the custom
parser into a Java program, then converts it into a byte code
program.

2. RELATED WORK
The structure of XML documents can be defined in a schema
language such as DTD [5], RELAX NG [12] or XML schema [28].
XML schema is currently the most widely used among these
schema languages.

There are many studies on schema-directed parsing of XML
documents [7, 9, 20, 14]. The methods proposed by [7, 9]
generate a customized parser for a specified schema. The
method generates a matching DFA from the XML schema
and uses it to accelerate the XML document analysis. The
method proposed by [20] directly produces analysis code
from XML schema. These methods speed up XML doc-
ument processing by restricting the acceptable document
syntax to the grammar defined by XML schema and pre-
allocating data that are defined from XML schema. Because
these methods generate an analyzer directly from XML schema,
they can perform XML schema validation in parallel with
document parsing. Unfortunately, XML schema specifica-
tion is complicated and error prone. For example, Bex et al.
reported that 2/3rds of XML schema descriptions they ex-
amined did not conform to the XML schema specification[4].
Our method is similar in principle to these methods because
it generates a DFA to accelerate XML processing. However,
our method does not require a XML schema description that
is not always guaranteed to be accessible and correct. This
means that our proposed method can create more compact
matching pattern using frequently occurring fragment data
as learning data. The compact matching pattern leads to
smaller matching overhead.

There are studies on automatically inferring XML schema
descriptions from XML document instances [10, 1, 3]. The
automatically generated descriptions can be fed as input to
the schema-directed parsing method. However, producing
correct XML schema definitions from example XML docu-
ments is difficult in general and requires correct and com-
plete example documents. In contrast, our method can



Figure 2: Proposed XML parser architecture

accept XML documents that have no correlation with the
learning XML documents because it can switch back to the
ordinary XML parser; thus, it does not require completely
correct XML schema or fully complying learning XML doc-
uments.

SOAP [27] is a protocol for exchanging messages between
clients and servers of Web services. It uses XML as its base
message format. Messages for the same Web service are
usually similar except in their value parts. Thus, there are
studies that separate SOAP messages into a fixed part and a
variable part. The fixed part is used as a template to accel-
erate message processing [8]. This idea is suitable for mostly
fixed and simple input data but not variable and complex
format. There are also studies on dynamically generating a
DFA from input SOAP messages [11, 25, 24]. These methods
compare the input SOAP message to the DFA created from
the previous input in order to reuse the previous message
deserialization results. They are similar to our method but
incorporate dynamic DFA construction in parallel with in-
put processing. They have an advantage that the DFA can
be updated dynamically according to the input data. On
the other hand, our method statically constructs the DFA
from training XML data to generate a custom parser. Thus,
our method can select the globally optimal pattern by stat-
ically selecting and optimizing production rules generated
from fine-tuned learning XML documents.

There are many other studies on XML acceleration meth-
ods. For example, Fast Infoset [19] extends XML to include
binary format in order to decrease the overhead for the sake
of serializing/deserializing performance. A hardware-based
acceleration method that offloads part of XML processing
has also been proposed [17].

The grammar-based compression algorithm [13, 18] we base
is a lossless data compression algorithm that uses context-
free grammar as a means for compressed data representa-
tion. The compressed data naturally represents the char-
acteristics of the original input data such as its structure
and phrases; it can be used for extracting the features of

DNA sequences, musical scores, and other data that have a
hierarchical structure. There are many studies on compress-
ing algorithm of XML documents for efficient archiving and
querying of large XML data [15, 6]. Compared with these
existing work on XML compression algorithm, our method
apply transformations on the compressed grammar because
our objective is extracting the matching pattern for efficient
XML parsing.

3. RECOGNIZING FREQUENT PATTERNS
IN XML DOCUMENTS

In order to generate a compact recognition pattern from
learning XML documents, the frequently occurring patterns
in the input data have to be found. Our frequent pattern
recognition algorithm is based on a grammar-based com-
pression algorithm to generate matching automaton. The
algorithm converts the input data into a context-free gram-
mar from which the frequent patterns for the matching XML
documents are extracted.

3.1 Conversion of input into grammar-based
representation

The grammar-based compression algorithm creates a context-
free grammar from input data [13]. The input data is en-
coded in the form of a context-free grammar that is uniquely
derived from the input. For this purpose, we use the SE-
QUITUR algorithm proposed by Nevill-Manning [18]. The
SEQUITUR algorithm constructs grammar rules that have
the following two properties:

property 1 No pair of adjacent symbols appears more than
once in the generated grammar.

property 2 Every production rule except the start rule is
used more than once.

The first property ensures that patterns that appear more
than once in the input data are merged together into a single
grammar rule; and the second property ensures that each



rule is useful. From the point of view of matching pat-
tern recognition, we can consider frequently referenced rules
as frequent pattern. The grammar generated by the SE-
QUITUR algorithm represents the hierarchical structure of
the original input symbol sequence. The algorithm operates
on a set of symbols Σ and obtains a context-free grammar
G = (V, Σ, R, S), where V is a finite set of non-terminal
symbols, R is a finite set of production rules, and S is the
start symbol of G. We represent the data part that varies
with each occurrence (such as literal contents of the XML
document) with the wildcard matching symbol “#”. The set
of symbols Σ is defined as T ∪{#}, where T is a set of XML
tags.

For example, the XML string “<a> <b> data </b> </a>” is
converted into the following seven symbols:

‘‘<a>’’, ‘‘#’’, ‘‘<b>’’, ‘‘#’’, ‘‘</b>’’, ‘‘#’’, ‘‘</a>’’

Note that space and carriage return characters are repre-
sented with a “#” symbol.

Step Input Generated Rules
1 <items> N0 →
2 # N0 → <items>

3 <item> N0 → <items> #

4 # N0 → <items> # <item>

. . . . . . . . .
i <item> N0 → <items> # <item> # <name> . . .

<item> #

i+1 # N0 → <items> N1 # <name> . . .
</item> N1

N1 → # <item>

i+2 <name> N0 → <items> N2 <name> . . .
</item> N2

N1 → # <item>

N2 → N1 #

i+3 <name> N0 → <items> N2 <name> . . .
</item> N2

N2 → # <item> #

. . . . . . . . .
j $ N0 → <items> N8 N8 # <items>

N8 → N7 N7

N7 → # <item> # <name> # </name>

<price> # </price> # </item>

Figure 3: Using the SEQUITUR algorithm to gen-
erate production rules

Figure 3 shows the results of applying the SEQUITUR al-
gorithm to the example XML data shown in Figure 1. The
“Input” column shows the next input symbol, and the “Gen-
erated Rules”column shows the grammar rules generated be-
fore consumption of the next input symbol. First, the empty
production rule “N0 →” and the next input symbol “<items>
are provided as the initial state. Since the grammar has
the two properties listed above, the symbol “<items>” is ap-
pended to the rule N0 generating “N0 → <items>”. Then,
the input symbols are appended to the production rule “N0”
until the second “<item>” is input in step i . In step i , if
we add a symbol “<item>” to the production rule N0, the

result does not satisfy the first property because the digram
“{N1, #}” appears twice on the right-hand side of rule “N0”.
Thus, the new production rule “N1 → # <item>” is created,
and the digrams are replaced with N1 in step i+1. Similarly,
in processing the next input symbol “#”, the digram “{N1,
#}” appears twice in the rules. These digrams are replaced
with the new production rule “N2 → N1 #” in step i+2. The
grammar rule after replacement does not satisfy the second
property because the number of references of the production
rule N1 becomes one. Thus, the reference of the production
rule N1 on the right-hand side of the rule N2 is expanded to
obtain the new production rule“N2→ # <item> #”. Repeat-
ing this process, we finally obtain the grammar rule shown
in step j 1.

We can observe from the grammar rule obtained by the SE-
QUITUR algorithm that the instance of “#, <item>, . . . ,
</item>” are replaced with one non-terminal symbol N7 and
the input data is compressed.

3.2 Recognizing repetitive patterns
The above grammar is equivalent to the input XML docu-
ment except that the contents of the document is represented
with a wildcard symbol “#”. Because the SEQUITUR algo-
rithm is a lossless compression, repeated input symbols are
represented with a fixed-length symbol sequence with a hi-
erarchical structure. However, a fixed repetitive pattern is
not good for predicting inputs; a non-fixed repetitive pat-
tern can match a larger range of input documents with a
small matching pattern. Thus, we transform the generated
SEQUITUR grammar into one that contains a repetitive
grammar in order to enlarge its applicability.

Figure 4: Recognition of repetitive patterns from
SEQUITUR grammar

The grammars obtained by the method described in the sec-
tion 3.1 represent the repetitive patterns in the input data
by making hierarchical references to a production rule that
has a digram of the same symbol on the right-hand side (see
Figure 4(a)). We can use the following procedure to rec-
ognize grammar patterns that occur more than once in a
document.

1“$” represents the end of the input.



Recognition of repetitive patterns:

1. For all production rules r ∈ R, apply the following
transformations.

1.1. If the right-hand side of the production rule r is
a digram of the same symbol represented as “A
→ α α”, replace the rule with “A → α*”, where
A ∈ V and α ∈ V ∪ Σ.

1.2. If the right-hand side of the production rule r
contains a digram of the same symbol represented
as “A → . . . B B . . . ” and B ∈ V is a rule of the
form “B → C*”, replace the digram with one B;
i.e., replace A with “A → . . . B . . . ”.

1.3. If the right-hand side of the production rule r is
repetitive represented as “A → B*” and B is also
a repetitive rule of the form “B → α*”, replace
the production rule of A by “A → α*”, where
A, B ∈ V and α ∈ V ∪ Σ.

Figure 4(b) shows the grammar for the example XML doc-
ument of Figure 1 after recognizing the repetition pattern.
Accordingly, the right-hand side of the production rule of N8
is translated into a repetitive pattern.

If the repetitive structure is nested and the number of in-
ner repetitions is different for each occurrence of the inner
repetition, they are recognized as different production rules.
Thus, the repetition within such a structure cannot share the
same pattern. To cope with this situation, we add a “prop-
erty” to terminate recognition of consecutive series of the
identical symbol; namely, we recognize up to 4 consecutive
series of the identical symbol and ignore the symbols after
that2. Although the resulting grammar does not have the
same XML structure as the input data, the pattern recog-
nition step treats the input as if it had the same repetitive
structure.

property 3 A consecutive series of identical symbols does
not repeat for more than four times in the generated
grammar.

Figure 5 shows an example of a nested repetitive structure.
The grammar shown in Figure 5(b) is generated from the
input data shown in Figure 5(a) if the termination property
is not used. In this case, the production rule N2 represents
repetition of the sequence “<item> # </item>”. By adding
the termination property, we can obtain the grammar shown
in Figure 5(c). This property recognizes repetitions of the
sequence “<list> . . . </list>” that includes repetitions of
the sequence “<item> . . . </item>”.

3.3 Transforming production rules
The matching pattern obtained in the learning phase is used
to find a sub-string that matches the predicted symbol se-
quences. If we allow any sequence of symbols to be used as

2This threshold is chosen because the SEQUITUR algorithm
creates hierarchical reference of production rules after 4 con-
secutive series of an identical symbol.

<list>

<item> # </item> <item> # </item>

<item> # </item> <item> # </item> // repeat 4 times
</list>

<list>

<item> # </item> <item> # </item> <item> # </item>

<item> # </item> <item> # </item> // repeat 5 times
</list>

(a) Training XML document

S → N3 N4 N3 N1 N4

N1 → <item> # </item>

N2 → N1 N1

N3 → <list> # N2 N2

N4 → # </list> #

(b) Generated rule without termination property 3

S → N3 N3

N1 → <item> # </item>

N2 → N1 N1

N3 → <list> # N2 N2 # </list>

(c) Generated rule with termination property 3

Figure 5: Effect of adding termination property 3 to
SEQUITUR grammar

the start symbol for matching, the opportunities for success-
ful matching will increase. However, in doing so, the input
string has to be checked at many points in an ordinary XML
parser, and this increases the parsing overhead. We restrict
the start of the matching pattern to tokens corresponding
to the start tags. Thus, we only need to change processing
of the start tags in the ordinary parser. This does not cause
a problem because the start and the end tags always ap-
pear in pairs in XML documents and the wildcard matching
character can’t be used as the start symbol of the matching
pattern.

Matching patterns are created from the production rules
generated from training XML documents. The SEQUITUR-
based rule generation algorithm does not guarantee that the
first symbols of the production rules are the start tags. Thus,
we transform the learned production rules to make them
start with a start tag. The transformation processes of the
production rules for repetitive rules and non-repetitive rules
are different.

Transforming repetitive rules:

We use a transformation method called grammar peeling to
make repetitive rules start with a valid start symbol. The
grammar peeling shifts the right-hand side symbols of the
repetitive rule as follows:

1. For each repetitive rule r ∈ R of the form “A →
{χ1 χ2 . . . χn}” apply the following transformations
if χ1 . . . χi are not valid start symbols (i.e., not start
tags) where A ∈ V and χi ∈ V ∪ Σ,

1.1. Create following three rules:



N0 → <items> N1 # </items>

N1 → N2*

N2 → # <item> # <name> # </name> . . . </item>

(a) Before transformation

N0 → <items> N1 # </items>

N1 → # N2 <item> # <name> . . . </item>
N2 → N3*

N3 → <item> # <name> # </name> . . . </item>

(b) After transformation

Figure 6: Transforming repetitive rules

• B → χ1 . . . χi C χi+1 . . . χn

• C → D*

• D → χi+1 . . . χn χ1 . . . χi

where A, B, C ∈ V and χi ∈ V ∪ Σ,

1.2. Replace all occurrences of A with B.

For example, in the production rules after the repetition
recognition shown in Figure 6(a), the start symbol “#”of the
production rule N2 is not a valid start symbol of a matching
pattern. Thus, the repetitive production rule N1 can’t be
used as a matching rule. By applying the grammar peeling
to this production rule, we can obtain the grammar shown
in Figure 6(b). After grammar peeling, the first symbol of
the new production rule N3 becomes“<item>”. The resulting
repetitive rule N3 can be used as a matching rule.

Transforming non-repetitive rules:

For each non-repetitive rule, we add a symbol before the
reference of the rule by using the following grammar trans-
formation:

1. For each production rule r ∈ R of the form“A → α . . .”
that starts with an invalid start symbol α, where A ∈
V and α ∈ V ∪Σ, apply the following transformation,

1.1. For each reference of the non-terminal symbol
A from a rule “B → χ1 . . . χn A . . .”, create a
new production rule “C → last(χ1 . . . χn) A . . .”,
where B, C ∈ V , β, χ ∈ V ∪Σ, and last(χ1 . . . χn)
means the last symbol that is valid for the start
of the production rule.

In the example shown in Figure 7(a), the first symbol of
the non-terminal symbol N1 is a wildcard symbol “#” and
is not a valid start symbol. The symbol N1 is referenced
from the right-hand side of the production of N0. Since
last(“<list>′′) = “<list>′′ and last(“<list> N1 </item>”)
=“</item>”, we create new production rules N2 and N3 from
the production rule N1. We cannot simply delete the original
rule, in this case N1, after this transformation because they
may be referenced from other production rules. However,
the following rule selection process ignores them in order to
ensure that no invalid symbol appears at the front of the
generated matching pattern.

N0 → <list> N1 </item> N1 <tail> # </tail>

</item> </list>

N1 → # <item> #

(a) Before transformation

N0 → <list> N1 </item> N1 <tail> # </tail>

</item> </list>

N1 → # <item> #

N2 → <list> N1

N3 → </item> N1

(b) After transformation

Figure 7: Transforming non-repetition rules

3.4 Rule selection
Generating a custom parser for all production rules gener-
ated from the previous method increases the applicability
of the parser. However, if the matching input is short, the
custom parser may not perform as well as it should because
of the overhead for invoking it. Thus, we select production
rules that are highly likely to improve performance from ones
obtained in the learning phase. This selection considers the
following three criteria: (1) the structure of the production
rule, (2) the expected rule length, and (3) the frequency
of occurrences. We prefer repetitive rules to non-repetitive
ones. The expected rule length is calculated by recursively
accumulating the rule length. We assume a fixed number of
iterations for repetitive rules3. The rule selection process is
as follows:

Rule selection:

1. Order rules with the following criteria:

repetitive-rule > rule length > frequency of rule oc-
currences

2. Select rules according to the following criteria:

2.1. Ignore following rules:

• the start rule,

• rules that start with an invalid symbol,

• repetitive-rules,

• surplus rules that is created by grammar peel-
ing.

2.2. ignore rules whose length is less than half of the
maximum rule length of already selected rules,

2.3. ignore rules that are included in the already se-
lected rules.

Applying the rule selection process described above to the
production rules after the rule transformation shown in Fig-
ure 6(b) results in only N2 being selected as a matching rule
because N0 is a start rule, N1 is a surplus rule created by
grammar peeling, and N3 is in the body of a repetitive rule.

3Our current implementation assumes that repetitive-rules
iterate 100 times.



4. GENERATING CUSTOM PARSER
Above, we described a method for detecting frequently oc-
curring patterns in XML documents that is based on grammar-
based compression algorithm. A custom parser is generated
from the obtained pattern and is used after recognition of
the first input symbol to improve parsing performance using
DFA-based character matching.

4.1 Generating recognition pattern
We generate a matching automaton from the generated pro-
duction rules. First, inlining of production rules is applied
to the rules. Because the SEQUITUR generated grammar
do not include recursive rules, the inlining terminates in a
finite number of applications. Figure 8 shows the gram-
mar obtained by inlining the rule N2. Each production rule
represents a sub-string of the input XML document and is
equivalent to a regular language that consists of concatena-
tion, alternation, and Kleene closure. Thus, we can generate
an NFA from inlined production rules to make a sub-string
matching of an XML document. The NFA is constructed
by combining NFAs that accept each production rules with
ε transitions. Figure 9 shows the generated NFA from the
grammar of Figure 8.

N2 → { <item> # <name> # </name> . . . </item> # }*

Figure 8: Rule after inlining

Figure 9: Generated NFA

Because the NFA contains ambiguous transitions, it is not
efficient to use it for actual matching. Thus, we convert the
NFA into DFA. This conversion is done by using a conven-
tional DFA construction and compaction algorithm.

4.2 Generating and invoking the custom parser
The custom parser in Java class format is generated from
the DFA representation of the matching pattern. The ex-
tended (i.e., ordinary+custom) parser loads the correspond-
ing custom parser when parsing XML documents. If an
input symbol matches the first symbol of the matching pat-
tern, the parser invokes the custom parser. As stated before,
this matching is only performed against the start tag in or-
der to decrease the overhead for transferring control from
the ordinary parser to the custom parser. The tag check-
ing is performed by using an initial state transition table.
The table consists of transition tag strings and target state
numbers.

Figure 10 shows the code fragment for invoking the custom
parser. The matching function match at (a) checks whether
the next symbol is the first one of the matching pattern.
If it is, it returns the next state number. If the next state
number is obtained, the parser invokes the custom parser
with the state number at (b). If the input does not match
the first symbol of the matching pattern, ordinary parser
processing is resumed at (c).

if((s = match(pattern selection table) > 0)) { // (a)

customParser(. . . , s); // (b)

} else {

// (c) ordinary parser processing
}

Figure 10: Calling code skeleton of the custom
parser

public class CustomParser {

extends AbstractCustomParser {

public int parser(. . . , int start_id) {

int next_state = start_id;

loop:

while(true) {

switch(next_state) {

case S0:
if(match pattern) {

// action code
next_state = next state number; // (a)

break; // (b)

} else {

// recovery code
}

case S1: // (c)

. . .
}

}

}

}

Figure 11: Code skeleton of the custom parser

4.3 Code generation for the custom parser
The code fragment of a custom parser is shown in Figure
11. One DFA state corresponds to one case block of the
switch statement. The “match pattern” validates an input
symbol with the state transition symbol to the next state.
If the input symbol matches the transition condition of the
current state, the corresponding event handler is called at
“action code” and the next state is set. The “recovery code”
is called when the input validation fails. This code normally
returns control to the ordinary parser. However, if it is in
the middle of processing a start tag with attribute values,
the custom parser continues the input processing until the
end of the start tag; then it returns to the ordinary parser.
This is because the transition between the ordinary parser
and the custom parser is performed on a tag by tag basis.

If state transitions continuously occur without branches, we
can eliminate state transition instructions by placing codes
corresponding to the next state after the code for the first
state. Thus, we traverse the generated DFA in a depth-first
manner and eliminate the transition instructions between
states that do not have other branches. For example, we can
eliminate code (a) and (b) from the code shown in Figure
11 if the “next state number” at (a) and the following state
number S1 at (c) are the same. If there is no transition to
label S1 , the label at (c) can also be eliminated.



5. EVALUATION
We evaluated an extended (i.e., ordinary+custom) parser
based on Xerces XML parser4 [2]. The evaluation used the
following environments:

CPU: Xeon5E5310 1.6GHz×4
Memory: 64GB
OS: CentOS 4.2
Java6VM: JDK1.6.0 06 64-bit server VM
VM option: -server -Xms1024M -Xmx1024M

Table 1: XML benchmark documents

name input train. description
periodic 114KB 9.3KB Periodic table of elements.
soap list 131KB 1.4KB SOAP message.
much ado 197KB 2.4KB Shakespeare play.
inv1000 924KB 9.3KB Invoice.
weblog 2.9MB 1.7KB Web server access log.

Figure 12: XML processing performance of baseline
and extended parsers

The evaluation used 5 XML documents (Table 1) from XML-
Bench [22] and XMLTest [23]. The evaluation was performed
under the following conditions:

• The processing time of 300 iterations was measured
after warm up of 300 iterations.

• The learning data were manually extracted from the
first 5 repetitions appearing in the original XML doc-
uments.

• No schema validation was performed.

• The empty event handler was used.

4We used xerces-J 2.7.1 as the baseline XML parser.
4Intel Xeon is a trademark or a registered trademark of Intel
Corporation in the United States and other countries.
5Java is a trademark or registered trademark of Sun Mi-
crosystems, Inc. in the United States and other countries.

We evaluated the baseline XML parser (ORIG) and the
proposed XML parser (EXT) with namespace processing
(+NS) and without namespace processing (-NS). The pro-
cessing times were averages of 10 benchmark runs. Figure
12 shows the relative performance compared to the baseline
XML parser with namespace processing.

With namespace processing, the extended parser was faster
than the baseline by up to 182% for the weblog benchmark
and 146% on average7. Without namespace processing, the
extended parser was up to 211% (178% on average) faster
than the baseline XML parser. The difference in the perfor-
mance between the case without namespace processing and
the case with namespace processing is caused by overhead
for recognizing XML namespaces.

Table 2: Rule, DFA and custom parser characteris-
tics of benchmarks

input XML generated selected DFA parser
document rules rules states size

periodic 24 3 169 19,589
soap list 7 1 41 9,010
much ado 23 5 46 9,742
inv1000 48 1 89 14,474
weblog 3 1 45 9,197

The characteristics of the learning phase are summarized in
Table 2. The extended parser selected only small rules as
matching patterns. The selected production rules are max-
imal repetition patterns for all training data except the pe-
riodic benchmark. The periodic benchmark includes many
alternating structures. Thus, they are recognized as different
production rules, and they require many switchings between
the ordinary parser and the customized parser. However, the
alternating structures are all selected and the common part
is merged in the generated automaton. This is the cause of
the relatively small performance improvements for the peri-
odic benchmark. The size of the custom parser in the class
file is mostly in proportion to the number of DFA states.

Figure 13 plots the change in the percentage of SAX events
covered by the custom parser versus the number of selected
grammar rules. The percentage of SAX events covered by
the custom parser is very high even when the number of
selected rules is one. This means that the extended parser
can appropriately select matching patterns. The event cover
ratio saturates when the number of rules equals to two.

6. CONCLUSION AND FUTURE WORK
We developed an extended XML parser that increases pro-
cessing speed by speculatively analyzing input data with a
pre-learned input pattern. It extracts matching patterns as
grammar rules from the learning XML documents to pro-
duce a customized parser. The customized parser is invoked
from the ordinary parser to improve the processing perfor-
mance on XML documents having the pattern learned by
the custom parser.

7The relatively small performance improvement on the
soap list benchmark seems to be caused by the larger names-
pace processing overhead.



Figure 13: Cover ratio of SAX events by custom
parser

The extended parser improved the SAX processing perfor-
mance with namespace processing by 146% on average and
up to a maximum of 182% when the input XML documents
were similar in structure to the learning XML documents.

The remaining work of this research will be to enable learn-
ing of XML documents that contain alternating elements in
a repetitive structure. For example, our method cannot pro-
duce optimal matching patterns for some benchmarks. This
causes transitions between the ordinary parser and the cus-
tom parser when the input consists of alternating structures.

Another issue regards probability-based grammar construc-
tion and selection. Our method currently does not use the
occurrence probability of the grammar rules in the learning
XML documents. We could use such probability to select
more appropriate patterns.
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