Combining Higher-Order Abstract Syntax
with First-Order Abstract Syntax in ATS

Kevin Donnelly

Boston University
{kevind, hwxi}@cs.bu.edu

Abstract

Encodings based on higher-order abstract syntax represent the vari-
ables of an object-language as the variables of a meta-language.
Such encodings allow for the reuse of «-conversion, substitution
and hypothetical judgments already defined in the meta-language
and thus often lead to simple and natural formalization. However,
it is also well-known that there are some inherent difficulties with
higher-order abstract syntax in supporting recursive definitions.

We demonstrate a novel approach to explicitly combining
higher-order abstract syntax with first-order abstract syntax that
makes use of a (restricted) form of dependent types. With this com-
bination, we can readily define recursive functions over first-order
abstract syntax while ensuring the correctness of these functions
through higher-order abstract syntax. We present an implemen-
tation of substitution and a verified evaluator for pure untyped
call-by-value A-calculus.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Languages, Verification

Keywords ATS, ATS/LF, Higher-Order Abstract Syntax, Depen-
dent Types, Theorem Proving

1. Introduction

We have recently seen a great deal of interest in the development
of mechanically checked formal systems for specifying and verify-
ing programming languages and their properties. One of the pri-
mary technical challenges facing such systems lies in the treat-
ment of variable binding constructs. Formalizations which make
use of first-order representations, where variables are explicitly rep-
resented as closed syntax, are often burdened by ubiquitous side
conditions on variable occurrences, and the need to explicitly de-
fine and use a-conversion, substitution, and hypothetical and para-
metric judgments in statements of object-level rules and properties.

The approach of higher-order abstract syntax (HOAS) [19],
which goes back to Church [6], makes use of meta-level vari-
ables to represent object-level variables. In such representations,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi t or commercial advantage and that copies bear this notice and the full citation
on the fi rst page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specifi ¢ permission and/or a fee.

MERLIN’05 September 30, 2005, Tallinn, Estonia.

Copyright (© 2005 ACM 1-59593-072-8/05/0009. . . $5.00.

58

Hongwei Xi

all variable-binding constructs of the object-languages are encoded
with meta-level A-abstractions. This approach enables us to reuse
meta-level «-conversion, substitution, and hypothetical and para-
metric judgments and thus eliminates the need for complex side-
conditions in rules. However, there seems to be an inherent prob-
lem with HOAS that we encounter immediately when attempting
to support recursion over HOAS.

There have been primarily two responses to this problem. One
is to give up HOAS and instead develop enhanced first-order repre-
sentations, and the other is to employ some mechanism to restrict
free variable occurrences in HOAS so as to support recursion. In
the first category we have encodings based on nominal logic [10],
which allows us to readily capture «-equivalence in terms but still
requires that substitution and hypothetical judgments be defined
for each object-language. Work in the second category is more di-
verse. For instance, we see the use of modality to restrict free vari-
ables [21] as well as proposals that stratify the meta-language into
separate representation and computation levels [22, 14]. Also in
this category is the so-called “weak” HOAS in which variables are
drawn from a different type than object-level terms [8].

We are to demonstrate a practical solution which falls into the
second category. We make use of a (restricted) form of dependent
types originally developed in Dependent ML [29, 23] to stratify the
meta-language into separate representation and computation lay-
ers. The higher-order representation is done in the statics, where
the function space is restricted (e.g., no recursion is allowed). This
representation is linked to the computation layer through the use
of dependent types (the higher-order representations become type
indices for a first-order representation in the dynamics). With this
strategy, we are required to define substitution for the first-order
representation, but we can assure the correctness of our implemen-
tation by making use of the higher-order representation in type in-
dices.

2. Themeta-language: ATS

A primary motivation for developing A7S [27] stems from an ear-
lier attempt to support a (restricted) form of dependent types in
practical programming. While there is already a framework Pure
Type System (P7S) [3] that offers a simple and general approach
to designing and formalizing type systems, it is well understood
that there often exist some acute problems (in the presence of de-
pendent types) making it difficult for P7S to accommodate many
common realistic programming features. In particular, we have
learned that some great efforts are required in order to maintain
a style of pure reasoning as is advocated in P7S when program-
ming features such as general recursion [7], recursive types [15],
effects [13], exceptions [11] and input/output are present.

To address such limitations of P7S, A7S is developed to al-
low for designing and formalizing (advanced) type systems that can

readily support common realistic programming features. The key
salient feature of A7ZS lies in a complete separation between stat-
ics, in which types are formed and reasoned about, from dynamics,
in which programs are constructed and evaluated. This separation,
with its origin in a previous study on a restricted form of dependent
types developed in Dependent ML (DML) [29, 23], makes it fea-
sible to support dependent types in the presence of effects such as
references and exceptions.

ATS is a programming language with an expressive type system
rooted in A7S, and ATS/LF is a component in ATS primarily
developed to support a paradigm that combines programming with
theorem proving [5]. The statics of ATS itself is a simply typed
language and the types in it are referred to as sorts. For instance, we
have the base sorts bool (for booleans B), int (for integers I), prop
(for props P) and type (for types T'). There are also certain built-in
static constructors (e.g., various type constructors) and functions
(e.9., A, V, +, —). A prop is just like a type, but it can only
be assigned to total dynamic terms (containing no effects such as
nontermination). In particular, there are only props in ATS/LF (as
ATS/LF contains only proof terms). We may use the name proof
termto refer to a dynamic term that can be assigned a prop.

In ATS, it is also allowed to introduce new sorts. For instance,
the following concrete syntax introduces a sort tm:

datasort tm = 1lm of (tm -> tm) | ap of (tm, tm)

and there two static constructors ap and lm associated with ¢m
which are given the following sorts:*

ap

However we do not allow definition by recursion over static terms.
Because of this restriction, we may freely define datasorts with
negative occurrences without sacrificing normalization of static
terms.

We assume a constraint relation of the form ; B1,..., B, &
B that determines the truth of B assuming B, ..., By, where X isa
static context containing all free static variables in By, ..., By, B.
In practice, we impose some restrictions (e.g., only allowing terms
of the sort bool to be linear inequalities on integers) so as to make
the constraint relation (effectively) decidable.

A tiny portion of the syntax of the dynamics is given in Figure 1.
We refer to Aa : o.d and d(s) as static abstraction and static
application, respectively.

The design of the concrete syntax of ATS is inspired by that of
SML. As in SML, datatypes can be declared in ATS. Furthermore,
datatypes in ATS can be indexed by static terms (aka. type indices).
Also, dataprops are available in ATS/LF, which are just the prop
version of datatypes. One major addition in the concrete syntax is
universal quantification over static terms, which is used extensively
in function signatures and datatype and dataprop definitions. As an
example, we can introduce a dataprop as follows:

(tm, tm) — tm Im (tm — tm) — tm

dataprop EVEN (int, bool) =
| zero (0, true)
| {n:int | n >= 0}
even (n+1, true) of EVEN (n, false)
| {n:int | n >= 0}
odd (n+1, false) of EVEN (n, true)

where the syntax {n:int | n >= 0} stands for universal quantifi-
cation over n : ¢nt with guard n > 0. We may also use the subset
sort nat which specifies nonnegative elements of int, and the syn-
tax {n:nat} has the same meaning as {n:int | n >= 0}.Given
an integer I, the prop EVEN(, true) (resp. EVEN(I, false))

1In ATS, we support constructors and functions of multiple arguments, so
the sort (¢m, tm) — t¢m indicates that ap forms a static term of the sort
tm when applied to two static terms of the sort ¢m.

59

are for proofs that I is an even (resp. odd) natural number. We have
three proof constructors associated with EVEN, which are given
the following props:

zero EVEN(0, true)

even Vn :intn>0D
EVEN((n, false) — EVEN(n + 1, true)

odd Vn :intn>0D

EVEN(n, true) — EVEN(n + 1, false)

In order to guarantee that recursively defined proof functions are
terminating, we require that termination metrics be explicitly pro-
vided (by the programmer). In the current implementation of ATS,
a termination metric consists of a tuple of static natural numbers
that are lexicographically decreasing in each recursive call. Also,
case coverage is guaranteed by making sure any cases not listed are
redundant. Please see [25, 24] for details on termination metrics
and [26] for details on case coverage checking.

We now present an example to explain how totality checking
works in ATS/LF. The following function is a proof that the sum of
two even natural numbers is even.

prfun evenAddEvenIsEven {nl:nat,n2:nat} .<nl>.
(pfl: EVEN(nl,true), pf2: EVEN(n2,true))
: EVEN(nl1+n2,true) =
// [casex] mandates exhaustive pattern matching
casex pfl of
| zero () => pf2
| even pfl => even (oddAddEvenIs0dd(pfi,pf2))

and oddAddEvenIs0dd {nl:nat,n2:nat} .<ni1>.
(pfl: EVEN(nl,false), pf2: EVEN(n2,true))
: EVEN(n1+n2,false) =
// [casex] mandates exhaustive pattern matching
casex pfl of
| odd pfl => odd (evenAddEvenIsEven(pfl,pf2))

The syntax term:type asserts a type or prop to a dynamic
term, or a sort to a static term, the final :type in the func-
tion signature specifies the return type of the function, which for
evenAddFEvenlIsEven is a proof that ni + nq is even if both n;
and n are even. The proof works by case analysis on the proof that
ny is even. If ny is 0, then n1 + n2 = na so the proof that no is
even suffices for the conclusion. If n; is an odd number plus one,
we use oddAddEvenIsOdd to prove that n1 — 1 + no is odd, and
use the even constructor to prove n1 — 1 +na + 1 = nq1 + n2
is even. Note that the prop assigned to evenAddEvenIsEven is
formally written as follows:

Vni : nat.Vns : nat.
(EVEN(nq, true), EVEN (na, true)) —
EVEN (n1 + ne, true)

The mutually recursive proof functions evenAddFEvenlsEven
and oddAddEvenlsOdd pass totality checking because (1) the
metric ny (specified by the concrete syntax .<n1>.) is decreasing
in the recursive call (it is n; — 1 in the recursive call if n;y > 0
holds) and (2) all cases are determined to have been covered: those
that are not considered are all redundant because taking one of
these branches would introduce the contradictory true = false
or false = true assumption. Also note that the integer inequality
decision procedure is used to solve the constraint ((n; — 1) +
n2) + 1 = n1 + no to check that the result of the second (resp.
the first) branch in the definition of evenAddEvenisEven (resp.
oddAddEvenl sOdd) proves the correct prop.

dynamic terms d == x|
values v == x| dcc(vy, ...
dyn.var.ctx. A == 0 |Ajx:T

dc(di,...,dyn) | lam z.d | fix z.d | app(di,d2) | Aa: o.d | d(s)...
d ,on) | lamzd | ...

Figure 1. Syntax for the dynamics of ATS

3. Representing Object Syntax

We now present an encoding of the pure untyped A-calculus in ATS.
The syntax of the object language is given as follows:

M == z|Xx.M| M (M)

A datasort tm for HOAS representation of this language can be
declared in ATS with which the following static constructors are
associated:

ap (tm, tm) — tm Im (tm — tm) — tm

Let us define a function - as follows:

27 = =z
Az M7 = Im(Az:tm."M")
’—Ml (Ml)j — al)(!—]\41_\7 V—M2_\)

which translates typed A-expressions into static terms of the sort
tm. Because the statics is nothing more than simply typed lambda
calculus with products and constants, we know that that ™7 is a
compositional bijection between canonical forms (i.e., n-long -
normal forms in this case) of the sort ¢m and pure untyped \-
expressions [18].

In order to push this higher-order representation down to a
first-order representation type, we will represent terms as terms-
in-contexts [9, 2]. The reason for doing this is that it will allow
us to capture meta-variables as de Bruijn indices for a first-order
representation. To do so, we first define the following sort for lists
of terms of the sort ¢tm.

infixr :: // a right associative infix operator
datasort tms = nil | :: of (tm, tms)

We now define a type IN for terms showing that a given static term
of the sort ¢m occurs in a static term of the sort tms:

datatype IN (tm, tms) =
| {ts:tms, t:tm} INone (t, t ::
| {ts:tms, t:tm, t’:tm}
INshi(t, t’> :: ts) of IN (t, ts)

Formally, the two constructors INone and INshi associated with IN
are given the following types:

Vits : tms.Vt : tm.() — IN(t,¢ :: ts)
Vts : tms.Vt : tm.Vt' @ tm.
IN(t,ts) — IN(t, ¢t :: ts)

It should soon be clear that such terms correspond to de Bruijn in-
dices: INone stands for the first de Bruijn index and INshi increases
a given de Bruijn index by 1. We can now define a first-order type
constructor TERM as follows:

ts)

INone
INshi

datatype TERM (tms, tm, int) =
| {ts:tms, t:tm} VAR (ts,t,0) of IN(t, ts)
| {ts: tms, t:tm, t’:tm, n:nat, m:nat}
APP (ts, ap(t, t’), m+n+l) of
(TERM (ts, t, n),TERM (ts, t’, m))
| {ts:tms, f: tm->tm, n:nat}
LAM (ts, 1m f, n+1) of
({x:tm} TERM (x :: ts, f x, n))

typedef TERMO (ts:tms,t:tm) = [n:nat] TERM (ts,t,n)

60

Formally, the three constructors VAR, LAM and APP associated
with TERM are given the types listed in Figure 2.

The intuition behind TERM can be readily explained. Assume
thatts = t1 1 ... i tp, mniland t; = "M, fori =1,...,n,
that is, ¢; represent M;. Then a term of type TERM(ts,t,n)
represents a (possibly open) pure untyped A-expression M of size
nsuchthatt ="Mlz1,...,2zn — My,..., M,]".

Note that this first-order representation for pure untyped -
expressions still retains some aspects of higher-order abstract syn-
tax. In particular, the LAM constructor takes a term of some univer-
sally quantified type. In order for this representation to be adequate,
we need to know that the argument of LAM, which is a dependent
function, is parametric in x (i.e. there is no case-distinction on x).
In the fragment of ATS presented, all quantification is parametric
and statics are fully erasable. In the full language we allow branch-
ing within props on terms of sort bool, and distinguish “parametric
sorts” which admit no (non-trivial) predicates for forming terms of
the sort bool, and tm is such a parametric sort.

As an example, the first-order representation for the A-expression
Az Ay.y(z) is:?

LAM(LAM(APP(VAR(INone), VAR(INshi(INone)))))

which corresponds precisely to the de Bruijn notation A.A.0(1).
In general, we can represent a A-expression with at most n free
variables as a term of the following type:

Vz1 :tm...Vo, i tm. TERM (21 ... =

where ¢ is a static term of the sort ¢m that may contain free
occurrences of z1, ..., Tn.

Tp i nil, 1),

3.1 Substitution

Using this representation for object terms, we must define substi-
tution on the first order TERM type. The substitution lemma is
defined as follows:

fun subst {t:tm,ts:tms,t’:tm,n:nat} .<n>.
(el: TERM(t :: ts, t’,n), e2: TERMO (ts, t))
: TERMO (ts, t’) =
casex el of

| VAR i => (casex i of INone () => e2
| INshi i’ => VAR i’)
| APP (ell, el2) =>
APP (subst (ell, e2), subst (el2, e2))

| LAM ef =>
LAM (lam {x:tm} =>
subst (exchl (ef{x}), weakenl e2))

This function needs some explanation. First of all we make use of
exchange (exchl) and weakening (weakenl) as lemmas. These
lemmas perform exchange or weakening at the first position in the
context. Additionally, we supply a termination metric even though
this is a program term and not a proof term. Since we do not
make use of any effectful constructs within this function, the metric
guarantees termination as expected. The LAM case is particularly

2\We have made static abstraction and application implicit here.

VAR Vts : tms.Vt : tm. (IN(¢, ts)) — TERM(ts, t,0)
LAM
APP Vis : tms.Vt1 : tm.Vta : tm.Vnq

Vts : tms.Vf : tm — tm.Vn : nat. (Vo : tm. TERM(z :: ts, f(z),n)) — TERM(ts, Im(f),n+ 1)
: nat.Vng : nat. (TERM(ts, t1,n1), TERM(ts, t2,n2)) — TERM(ts, ap(t1,t2),n1 + n2 + 1)

Figure 2. The types of the constructors associated with TERM

interesting because in the result of that case, the argument to LAM
lam {x:tm} => subst (exchl (ef{x}), weakenl e2)
seems to have the type
Yz : tm.3n : nat. TERM(x :: ts,t',n)
but the LAM constructor expects an argument of type
In : nat.Vz : tm . TERM(x :: ts,t',n).

Fortunately, since we know that the universal quantification is para-
metric, and since terms of sort int cannot contain terms of sort ¢m,
we know n cannot depend on z, so this quantifier alternation is
legal. The substitution function is given the following type:

Vts : tms.Vt : tm.Vt : tm.Vn : nat.
(TERM(t :: ts,t',n), TERMO(ts, t)) —
TERMO(1s, t').

And this type shows that the substitution function returns the proper
substituted term.

3.2 Evaluation

In this section we define the call-by-value big-step evaluation rules
for the language and give an implementation of an evaluator which
is verified correct with respect to this definition. We define the
semantics as a dataprop EVAL indexed by a term, its evaluation
and the size of the evaluation.

dataprop EVAL(tm, tm, int) =
| {f:tm->tm} EVALlam (Im f, 1m f, O)
| {t1:tm, t2:tm, fl:tm->tm, v2:tm, v:tm,
nl:nat, n2:nat, n3:nat}
EVALapp (ap (t1, t2), v, nl+n2+n3+1) of
(EVAL(t1, 1m f1, nl),
EVAL(t2, v2, n2),
EVAL(f1 v2, v, n3))

propdef EVALO(tl:tm,t2:tm) = [n:nat] EVAL(t1,t2,n)

We will now define a prop to identify values, which in our case is
only A-expression. Additionally we prove value soundness and its
converse, which will be used as lemmas in the evaluation function.

dataprop ISVAL (tm) = {f:tm->tm} ISVAL (Im f)
prfun lemmal {t:tm, v:tm, n:nat} .<n>.
(pf: EVAL (t, v, n)): ISVAL v =
casex pf of
| EVALlam () => ISVAL O
| EVALapp (_, _, pf3) => lemmal pf3

prfun lemma2 {t:tm} .< >.
(pf: ISVAL t): EVAL (t, t, 0) =
casex pf of ISVAL() => EVALlam ()

In order to demonstrate the utility of this style of programming with
a combination of higher-order and first-order representation, we
will implement evaluation in a different way than it was specified.
In particular we will use environments and closures and implement
application as environment extension rather than actual substitution

61

(as it is specified). In order to do this, we create datatypes for values
and environments as follows:

datatype VAL (tm) =
{ts:tms, f: tm->tm}
VALclo (I1m f) of
(ENV ts, {t:tm} TERMO (t :: ts, f t))
and ENV (tms) =
| ENVnil (nil)
| {ts:tms, t:tm}
ENVcons (t :: ts) of
(ISVAL t | ENV ts, VAL t)

The only values are closures which are a pair of an environment
and a function term for that environment. An environment is a list
of values along with proofs that they are values. In the definition of
ENYV we first see props and types living side by side. The syntax
(P | T) forms a type which is a tuple of a prop, P, and a type, T.
After type-checking, the proof term corresponding to the prop will
be erased.

We can now use these definitions to implement an evaluation
function in Figure 3, where the type of the function proves its partial
correctness. Note that the function eval is given the following type:

Vits : tms.Vt : tm.Vp : nat.
(TERMO(ts,t), ENV(ts,p)) —
Jv : tm.(EVALO(t,v) | VAL(v))

And this type guarantees that if the function returns, it returns the
value specified by the EVAL prop, so as long as EVAL correctly
characterizes the evaluation relation, this eval function is partially
correct. After type-checking, the proof for the EVAL prop is
erased and we are left with a verified evaluator.

3.3 Other Examples

We have completed a suite of examples, which can be found on-
line [28]. Other examples that we have applied this methodology to
are simply typed A-calculus with products and fix-point as well as
mini-ML with references. The example of mini-ML with references
is particularly interesting because we specify evaluation using a list
of values to represent references, leading to a linear lookup time
for references, but we implement evaluation using an array to store
references, allowing for constant time lookup. Unfortunately this
example is too complicated to adequately present here.

4. Related Work and Conclusion

There is a good deal of work on supporting induction on higher-
order abstract syntax. Hofmann [12] gives a survey of several
variants of HOAS and shows how to derive induction principles for
them. We consider our approach to be most closely related to the
stratified meta-logic described by Miller and McDowell in [14]. In
their system, they start with a simple intuitionistic meta-meta-logic
with natural numbers induction, then encode an object-meta-logic
of sequents used for judgments (using a similar representation for
variable lookups as IN(¢ms,tm)). They then encode languages
within the object-meta-logic and do inductive proofs on judgments
within the meta-meta-logic. Our method basically collapses the
object-meta-logic and object-language.

fun evalVar {ts:tms, t:tm}
(i: IN (t, ts), env: ENV ts)
>(ISVAL t | VAL t) =
casex i of

| INone () =>
let val ENVcons(pf | _, v) = env in
(pf | v)
end
| INshi i =>
let val ENVcons (_ | env, _) = env in
evalVar (i, env)
end

fun eval {ts:tms, t:tm}
(e: TERMO (ts,t), env: ENV ts)
[v:tm] °’(EVALO(t,v) | VAL v) =
casex e of
| VAR i =>
let
val ’(pf | v) = evalVar (i, env)
in
’(lemma2 pf | v)
end

| LAM ef => ’(EVALlam () | VALclo (env, ef))

| APP (el, e2) =>
let

val ’(pfl | v1) = eval (el, env)
val ’(pf2 | v2) = eval (e2, env)
val VALclo (env0O, efl) = vi
val > (pf3 | v) =

eval (efi{...},

ENVcons (lemmal pf2 | env0O, v2))

in
> (EVALapp (pfl, pf2, pf3)| v)
end

Figure 3. A verified evaluation function for A-calculus

More recently, Miller and Tiu introduced the V quantifier to
allow for local scoping of parameters in order to eliminate the need
for the object-meta-logic [16]. Schiirmann et al’s V-calculus [22]
uses a similar idea to support functional programming over higher-
order abstract syntax in the Delphin language.

In [21], Schirmann, Despeyroux, Pfenning use a modal op-
erator distinguish closed HOAS terms, over which induction is
allowed. This lets them allow primitive recursive functions over
HOAS without losing adequacy. While this formulation is simpler
than our mixed representation, it is also less flexible in that it does
not allow recursion over open terms.

Our representation also bears a close resemblance to the terms-
in-context representation introduced by Despeyroux and Hirschowitz
in [9], and more recently by Ambler, Crole and Momigliano in [2].
The main difference in our approach is that we use separate lan-
guages for the higher-order and first order representations. This
separation allows us to use full HOAS rather than weak HOAS.
Additionally we use finite-lists for contexts rather than functions-
as-infinite-lists for contexts.

Ambler, Crole and Momigliano’s Hybrid [1] uses de Bruijn
representation under the hood to validate an induction principal
over HOAS. This strategy is very similar to our own, however the
motivation and applications are different. In addition, because they

are working within Isabelle which has only one function space,
they are forced to define predicates for function parametricity and
expression non-exoticness.

In [4], Bird and Paterson give a representation of de Bruijn
terms as a nested datatype. This representation is somewhat sim-
ilar to ours in that the free variables of a term are constrained by
the type and this can be used to guarantee well-scopedness. Our
representation, however, allows for verification of many more com-
plex properties as the type can specify a fixed substitution of terms
for variables in the de Bruijn term. This enables specification and
verification of evaluation, among other things.

Along a different line, Pitts and Gabbay develop the theory
of FM-sets into a logic which supports fresh-variable quantifi-
cation, nominal logic, and a programming language based on
this logic [20, 10]. Using such nominal encodings gives one a-
conversion for free and eliminates the need for complex side condi-
tions on rules, but one must still define substitution. Nanevski [17]
combines fresh-name quantification and a modality to allow for
construction of more efficient meta-programs.

We have investigated an encoding in ATS that combines higher-
order abstract syntax with first-order syntax. A significant advan-
tage of this encoding is that we may define recursive functions
over first-order abstract syntax while ensuring the correctness of
these functions through higher-order abstract syntax. Also, we have
completed a variety of running examples in ATS in support of the
viability of this approach, some of which are readily available on-
line [28].

References

[1] AMBLER, S.J., CROLE, R. L., AND MOMIGLIANO, A. Combining
Higher Order Abstract Syntax with Tactical Theorem Proving and
(Co)Induction. In Proceedings of the 15th International Conference
on Theorem Proving in Higher Order Logics, Hampton, VA, USA
(2002), vol. 2410 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 13-30.

[2] AMBLER, S. J., CROLE, R. L., AND MOMIGLIANO, A. A
definitional approach to primitive recursion over higher order abstract
syntax. In MERLIN ’'03: Proceedings of the 2003 workshop on
Mechanized reasoning about languages with variable binding (New
York, NY, USA, 2003), ACM Press, pp. 1-11.

[3] BARENDREGT, H. P. Lambda Calculi with Types. In Handbook
of Logic in Computer Science, S. Abramsky, D. M. Gabbay, and
T. Maibaum, Eds., vol. II. Clarendon Press, Oxford, 1992, pp. 117-
441,

[4] BIRD, R. S., AND PATERSON, R. de bruijn notation as a nested
datatype. J. Funct. Program. 9, 1 (1999), 77-91.

[5] CHEN, C., AND XI, H. Combining programming with theorem
proving. In Proceedings of the 10th International Conference on
Functional Programming (ICFP’05) (September 2005).

[6] CHURCH, A. The Calculi of Lambda-Conversion, vol. 6 of Annals of
Mathematics Sudies. Princeton University Press, Princeton, 1941.

[7] CONSTABLE, R. L., AND SMITH, S. F. Partial objects in constructive
type theory. In Proceedings of Symposium on Logic in Computer
Science (Ithaca, New York, June 1987), pp. 183-193.

[8] DESPEYROUX, J., FELTY, A. P., AND HIRSCHOWITZ, A. Higher-
order abstract syntax in cog. In TLCA (1995), pp. 124-138.

[9] DESPEYROUX, J., AND HIRSCHOWITZ, A. Higher-order abstract
syntax with induction in cog. In LPAR’94: Proceedings of the 5th
International Conference on Logic Programming and Automated
Reasoning (London, UK, 1994), Springer-Verlag, pp. 159-173.

[10] GABBAY, M. J., AND PITTS, A. M. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing 13
(2001), 341-363. Special issue in honor of Rod Burstall. To appear.

[11] HAYASHI, S., AND NAKANO, H. PX: A Computational Logic. The
MIT Press, 1988.

[12] HOFMANN, M. Semantical analysis of higher-order abstract syntax.

In LICS'99: Proceedings of the 14th Annual |IEEE Symposium on
Logic in Computer Science (Washington, DC, USA, 1999), IEEE
Computer Society, p. 204.

[13] HONSELL, F., MASON, I. A., SMITH, S., AND TALCOTT, C. A
variable typed logic of effects. Information and Computation 119, 1
(15 May 1995), 55-90.

[14] McDoOwELL, R., AND MILLER, D. A logic for reasoning with
higher-order abstract syntax. In LICS(1997), pp. 434-445.

MENDLER, N. Recursive types and type constraints in second-order
lambda calculus. In Proceedings of Symposium on Logic in Computer
Science (Ithaca, New York, June 1987), The Computer Society of the
IEEE, pp. 30-36.

MILLER, D., AND Tiu, A. A proof theory for generic judgments: An
extended abstract. In Proceedings of LICS 2003 (June 2003), IEEE,
pp. 118-127.

NANEVSKI, A. Meta-programming with names and necessity. In
ICFP '02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming (New York, NY, USA, 2002),
ACM Press, pp. 206-217.

[18] PFENNING, F. Computation and Deduction. Cambridge University
Press. (to appear).

[19] PFENNING, F., AND ELLIOTT, C. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’'88 Symposium on Language
Design and Implementation (Atlanta, Georgia, June 1988), pp. 199-
208.

PITTS, A. M., AND GABBAY, M. J. A metalanguage for program-
ming with bound names modulo renaming. In Mathematics of Pro-
gram Construction. 5th International Conference, MPC2000, Ponte
de Lima, Portugal, July 2000. Proceedings (2000), R. Backhouse and
J. N. Oliveira, Eds., vol. 1837 of Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, pp. 230-255.

[15]

[16]

[17]

[20]

63

[21] SCHURMANN, C., DESPEYROUX, J., AND PFENNING, F. Primitive
recursion for higher-order abstract syntax. Theor. Comput. Sci. 266,
1-2 (2001), 1-57.

[22] SCHURMANN, C., POSWOLSKY, A., AND SARNAT, J. The
[triangle]-calculus. functional programming with higher-order
encodings. In TLCA (2005), P. Urzyczyn, Ed., vol. 3461 of Lecture
Notes in Computer Science, Springer, pp. 339-353.

[23] X1, H. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, 1998. pp. viii+189. Available at
http://www.cs.cmu.edu/ hwxi/DML/thesis.ps.

[24] X1, H. Dependent Types for Program Termination Verification. In
Proceedings of 16th IEEE Symposium on Logic in Computer Science
(Boston, June 2001), pp. 231-242.

[25] X1, H. Dependent Types for Program Termination Verification.
Journal of Higher-Order and Symbolic Computation 15, 1 (March
2002), 91-132.

[26] X1, H. Dependently Typed Pattern Matching. Journal of Universal
Computer Science 9, 8 (2003), 851-872.

[27] X1, H. Applied Type System (extended abstract). In post-workshop
Proceedings of TYPES 2003 (2004), Springer-Verlag LNCS 3085,
pp. 394-408.

[28] X1, H. Applied Type System, 2005. Available at:
http://www.cs.bu.edu/ hwxi/ATS.

[29] Xi, H., AND PFENNING, F. Dependent Types in Practical
Programming. In Proceedings of 26th ACM S GPLAN Symposium on
Principles of Programming Languages (San Antonio, Texas, January
1999), ACM press, pp. 214-227.

