A Computational Approach to Reflective Meta-Reasoning about
Languages with Bindings*

Aleksey Nogin Alexei Kopylov ~ XinYu Jason Hickey

Department of Computer Science
California Institute of Technology
M/C 256-80, Pasadena, CA 91125

{nogin,kopylov,xiny,jyh}@cs.caltech.edu

Abstract 1. Introduction

We present a foundation for a computational meta-theory of lan- 1.1 Reflection
guages with bindings implemented in a computer-aided formal rea-
soning environment. Our theory provides the ability to reason ab-
stractly about operators, languages, open-ended languages, class
of languagesetc. The theory is based on the ideas of higher-order
abstract syntax, with an appropriate induction principle parameter-
ized over the languagée€. a set of operators) being used. In our ap-
proach, both the bound and free variables are treated uniformly and
this uniform treatment extends naturally to variable-length bind-
ings. The implementation is reflective, namely there is a natural
mapping between the meta-language of the theorem-prover and th
objept Ia}nguage of our theory. The object Ianguage_ substitution op- Suppose for example that we are exploring some language that
eration is mapped to the meta-language substitution and does not,,aing arithmetic operations. And in particular, in this language
need to be defined recursively. Our approach does not require de-; .. \vrite polynomials like2 + 2x+ 1. In this case the number
signing a custom type theo_ry, in this paper we describe the im- of roots of a polynomial is a semantic property since it has to do
plementation OT this fogndatlo_nal theory W'th'n a general-purpose with thevaluationof the polynomial. On the other hand, the degree
:)yrz?ntg?g\%rTSIsSinvg\]IOthelspIglgxli?t?@nlleéti?k;n&%E?_ngl:stg,?e of a polynomial could be considered an example of a syntactic
computation’al type theory. Based on this implementation, we lay property since the most natural way to d_eflne itis as a property of
out an outline for a framework for programming language experi- ¢ EXPressionhatrepresentshat polynomial. Of course, syntactic
mentation and exploration as well as a general reflective reasoning{)hmpert'eS o_ft(ﬁn have ?en:artltchc_:onsequ?nc%s, WhICE IS that Takfes
framework. This paper also includes a short survey of the existing em especially Important. In this example, the number ot roots o

approaches to syntactic reflection a polynomial is bounded by its degree.
PP Y ’ Another area where reflection plays an important role is run-

time code generation — in most cases, a language that supports
run-time code generation is essentially reflective, as it is capable
of manipulating its own syntax. In order to reason about run-time
code generation and to express its semantics and properties, it is
natural to use a reasoning system that is reflective as well.
General Terms Languages, Theory, Verification There are many different flavors of reflection. Thgntactic
reflectionwe have seen in the examples above, which is the ability
Keywords Higher-Order Abstract Syntax, Reflection, Type The- ©f a system to internalize its own syntax, is just one of these
ory, MetaPRL, NuPRL, Programming Language Experimentation, many flavors. Another very important kind of reflectionlagical
Languages with Bindings. reflection which is the ability of a reasoning system or logic to
internalize and reason about its own logical properties. A good
example of a logical reflection is reasoning about knowledge —
since the result of reasoning about knowledge is knowledge itself,
the logic of knowledge is naturally reflectivait04].

In most cases it is natural for reflection to be iterated. In the
case of syntactic reflection we might care not only about the syntax
of our language, but also about the syntax used for expressing the
Permission to make digital or hard copies of all or part of this work for personal or syntax, the syntax for expressing the syntax for eXpressmg_ t_he
classroom use is granted without fee provided that copies are not made or distributedSyNntax and so forth. In the case of the logic of knowledge it is

for profit or commercial advantage and that copies bear this notice and the full citation natural to have iterations of the form “I know that he knows that
on the first page. To copy otherwise, to republish, to post on servers or to redistribute | know

to lists, requires prior specific permission and/or a fee. When a formal system is used to reason about properties of pro-

MERLIN’05 September 30, 2005, Tallinn, Estonia. . .) .
Copyright© 2005 ACM 1-59593-072-8/05/0009. . . $5.00. gramming languages, iterated reflection magnifies the power of the

Very generally, reflection is the ability of a system to be “self-
aware” in some way. More specifically, by reflection we mean the
('b?operty of a computational or formal system to be able to access
and internalize some of its own properties.

There are many areas of computer science where reflection
plays or should play a major role. When exploring properties of
programming languages (and other languages) one often realizes
that languages have at least two kinds of propertiesemantic

roperties that have to do with tineeaningof what the language’s
onstructs express asgntacticproperties of the language itself.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guage§ Formal Definitions and Theory—Syntax; F.4.Blgth-
ematical Logic and Formal LanguadgesFormal Languages—
Operations on languages

* An extended version of this paper is available as Caltech Technical Report
CaltechCSTR:2005.00BJKYHO5]

system, making it more natural to reason not just about individual 1.3 Notation and Terminology
languages, but also abotlassef languages, languagehemas
and so on. More generally, reflection adds a lot of additional power

to a formal reasoning syster®E89 IArt99). In particular, it is rem prover we use. However, since we implement this theory in

well-known [G6d36 Mos52 [EM71, [Par7] that reflection allows MetaPRL, we introduce some basic knowledge abblgtaPRL
a super-exponential reduction in the size of certain proofs. In addi- terms. '

tion, reflection could be a very useful mechanism for implement- A MetaPRL term consists of:

ing proof search algorithm#ALCU93, (GWZ0G [CFWO04. See also et ! '

[Har9g for a survey of reflection in theorem proving. 1. An operator name (like “sum”), which is a unique name indi-
cating the logic and component of a term;

We believe that our approach to reasoning about syntax is fairly
general and does not rely on any special features of the theo-

2. A list of parameters representing constant values; and

1.2 Uniform Reflection Framework 3. A set of subterms with possible variable bindings.
For each of the examples in the previous section there are many, . .
ad-hocways of achieving the specific benefits of a specific fla- Xgﬁiﬁ)ﬁ;@:ﬂ'\g&g syntaxto describe terms, based ONURRL
vor of reflection. This work aims at creatinguaifying reflective £ :
frameworkthat would allow achieving most of these benefits in a opname [p1;---; Pnl{v1.t1; -« : vmn.tm}
uniform manner, without having to reinvent and re-implement the —
basic reflective methodology every time. We believe that such a
framework will increase the power of the formal reasoning tools, In addition, MetaPRL has a meta-syntax somewhat similar to
and it may also become an invaluable tool for exploring the proper- the higher-order abstract syntax presented in Pfenning and Elliott
ties of novel programming languages, for analyzing run-time code [PE8g. MetaPRL uses the second-order variables in the style of
generation, and for formalizing logics of knowledge. Huet and LanglfiL78] to describe term schemas. For example,
This paper establishes a foundation for the development of this ; x v[x], whereV is a second-order variable of arity 1, is a schema
framework — a new approach to reflective meta-reasoning about that stands for an arbitrary term whose top-level operatbr is
languages with bindings. We present a theory of syntax that: This meta-syntax requires that every time a binding occurrence
is explicitly specified in a schema, all corresponding bound occur-
« in a natural way provides both a higher-order abstract syntax rences have to be specified as well. This requirement makes it very
(HOAS) approach to bindings and a de Bruijn-style approach €asy to specify free variable restrictions — for example,V,

to bindings, with easy and natural translation between the two; WhereV is a second-order meta-variable of arity 0, is a schema
that stands for an arbitrary term whose top-level operataraad

° prOV|de§ a uniform HOAS-style approach to both bo“und an(’j’ whose body does not have any free occurrences of the variable
free_varlaples that extends naturally to variable-length “vectors bound by that.. In particular, the schemiax.VV matches the term
of binders; Ay.1, but not the term.x.x.

e permits meta-reasoning about languages — in particular, the In addition, this meta-language allows specifying certain term
operators, languages, open-ended languages, classes of lanransformations, including implicit substitution specifications. For
guage=stc are all first-class objects that can be reasoned about example, a beta reduction transformation may be specified using
both abstractly and concretely; the following schema:

operator name parameters subterms

* comes with a natural induction principle for syntax that can be OXNVIXD) Vo < Vi[Vol
parameterized by the language being used;
Here the substitution df, for x in V1 is specified implicitly.
Throughout this paper we will use this second-order notation to
denote arbitrary terms — namely, unless stated otherwise, when we
write “Ax.t[x]” we mean an arbitrary term of this form, not a term
containing a concrete second-order variable named “t”.
e is fully derived in a pre-existing type theory in a theorem As in LF [HHP93 we assume that object level variables(
prover; the variables of the language whose syntax we are expressing)
« is designed to serve as a foundation for a general reflective @re directly mapped to meta-theory variables. the variable of
reasoning framework in a theorem prover; the language that we use to express the syntax). Similarly, we
)]]) assume that the object-level binding structure is mapped to the
¢ is designed to serve as a foundation for a programming lan- meta-level binding structure. In other words, the object-level notion
guage experimentation framework. of the “binding/bound occurrence” is a subset of that in the meta-
language. We also considerequal terms — both on the object
The paper is structured as follows. Our work inherits a large level and on the meta-level — to be identical and we assume that
number of ideas from previous efforts and we start in Se@on substitution avoids capture by renaming.
with a brief survey of existing techniques for formal reasoning The sequent schema language we d02] contains a num-
about syntax. Next in Sectid8 we outline our approach to rea- ber of more advanced features in addition to those outlined here.
soning about syntax and in Sectidiwe present a formal account However, for the purposes of this presentation, the basic features
of our theory based on a Martindk style computational type the- outlined above are sufficient.
ory [CABT86,|[HAB ™| and the implementation of that account in
the MetaPRL theorem prover{lic97, [Hic99, [Hic01, [HNCT03, . .
HNK ™|, IHABT]. Then in Sectioflwe outline our plan for building 2. Previous Models of Reflection
a uniform reflection framework based on the syntactic reflection. In 1931 Gdel used reflection to prove his famous incompleteness
Finally, in Sectiorfldwe resume the discussion of related work that theorem [G6d3]]. To express arithmetic in arithmetic itself, he
was started in Sectid? assigned a unique number @bddel numbey to each arithmetic

¢ provides a natural mapping between the object syntax and meta-
syntax that is free of exotic terms, and allows mapping the
object-level substitution operation directly to the meta-level one
(i.e. B-reduction);

formula. A Gddel number of a formula is essentially a numeric In general, the well-formedness (typing) rule for a quoted oper-

code of a string of symbols used to represent that formula. ator is the following:

A modern version of the &lel’s approach was used by Aitken
et al. [ACHA90, /AC92, JACU93 [Con94 to implement reflection theTerm ... theTerm)
in the NuPRL theorem proverCAB™86,|/ACET0Q]. A large part opfty; ...; th} € Term

of this effort was essentially a reimplementation of the core of the
NuPRL prover insideNuPRL'’s logical theory.

In Godel's approach and its variations (including Aitken’s one),
a general mechanism that could be used for formalizing one logical
theory in another is applied to formalizing a logical theory in itself.
This can be very convenient for reasongilgputreflection, but for
our purposes it turns out to be extremely impractical. First, when
formalizing a theory in itself using generic means, the identity
between the theory being formalized and the one in which the
formalization happens becomes very obfuscated, which makes it
almost impossible to relate the reflected theory back to the original
one. Second, when one has a theorem proving system that alread
implements the logical theory in question, creating a completely (Term— Term) — Term or (Var — Term) — Term
new implementation of this logical theory inside itself is a very
tedious redundant effort. Another practical disadvantage of the In this approach, the quotedk.x might look like L(Ax.x) and the
Godel numbers approach is that it tends to blow up the size of quotedix.1 might look likeA(1x.1). Note that in these examples
the formulas; and iterated reflection would cause the blow-up to the quoted terms have to make use of both the syntasiggoted)
be iterated as well, making it exponential or worse. operator, and the semantic operator

A much more practical approach is being used in some pro- Exotic Terms. Naive implementations of the above approach
gramming languages, such as Lisp and Scheme. There, the comsuffer from the well-known problem of exotic term®IH95,
mon solution is for the implementation éxposéts internal syntax DFH9Y|. The issue is that in general we can not allow applying
representation to user-level code by th@te constructor (where the A operator to an arbitrary function that maps terms to terms (or
quote (t) prevents the evaluation of the expresstdnThe prob- variables to terms) and expect the result of such an application to
lems outlined above are solved instantly by this approach: there is be a “proper” reflected term.
no blow-up, there is no repetition of structure definitions, there is Consider for example the following term:
even no need for verifying that the reflected part is equivalent to the)
original implementation since they aidentical Most Scheme im- A(Ax.if x = 1then 1 else2)
plementations take this even further: theal function is the inter- . . - .
nal function for evaluating a Scheme expression, which is exposed It is relatively easy to see th_at it is not a real syntactic term .and
to the user-level; SmitHdmig4 showed how this approach can can not be obtained by quoting an actual term. (For comparison,
achieve an infinite tower of processors. A similar language with the ; = = s
guotation and antiquotation operators was introduceGMO0J. Ax.if x = 1then 1else2). — 1w

This approach, however, violates tbengruence propertwith y quy canoone ensure ;hge denotes a “real term.and not an
respect to computation: if two terms are computationally equal then exotic” one? That is, is it equal to a result of quoting an actual

one can be substituted for the other in any context. For instance,term of_the_ object '.ang.uage'-’ One pos_slblllty is to reqeite be
although 2+ 2 is equal to 4, the expressiong+2” and “4” are a substitution functionin other words it has to be equal to an

syntactically different, thus we can not substit@e2 by 4 in expression of the formx.t[x] wheret is composed entirely of term

the expressiolquote (2+2). The congruence property is essential constructorsi(e. quote_d operators) and wh_ile usingdestructors
in many logical reasoning systems, including t4ePRL system (such as case analysis, tiieoperator used in the example above,

mentioned above and thiletaPRL system [HNCT03, [HNKT, etq is prohibited. . .
HAB] that our group uses. There are a number of approaches to enforcing the above restric-

A possible way to expose the internal syntax without violat- tion. One of them is the usage of logical frameworks with restricted

; : p » . function spacesHE88 HHP93, where A-terms may only con-
ing the congruence property is to use the so-called “quoted” or . : . . .
“shifted” operators/AA99, [Bar03, [Bar0q rather than quoting the tain constructors. Another is to first formalize the larger type that

whole expression at once. For any operatpin the original lan- does include exotic terms and then to define recursively a predicate

describing the “validity” or “well-formedness” of a ternbH94
guage, we add thquoted operatodenoted a®p) to represent a . . . o=
term built with the operatoop. For example, if the original lan- DFH95 thus removing the exotic terms from consideration. Yet

guage contains the constant “0” (which, presumably, represents the2Cther approach is to create a specialized type theory that com-
number 0), then in the reflected langua@eyould stand for the bines the |ol_?a of restricted function spaces with a_m_oda_l type oper-
term that denotes the expression “0”. Generally, the quoted opera-atnOr E?P?g" BLQ?’ ,,DtLOéJ_' '{)htere ﬂl}e cage ﬁ”’ﬂys'f |sfd|sa||ow_e?
tor has the same arity as the original operator, but it is defined on? ODJ(_?_C _s”? plllj € type, bu |s§ %V\;ﬁ 0 ?. j;acdsfo a;_spema
syntactic terms rather than on semantic objects. For instance, while ypeLil. TNiS alows expressing bo € restrictec lunction space

% IS a binary operator on numbegsijs a binary operator on terms. :Tl _t; T2" and the unrestricted ongITy) — To" within a single
Namely, ift; andty are syntactic terms that stand for expressions ypin fﬁ“r" f reqarding the problem of exotic terms is that it
e, ande, respectively, theiy xts is a new syntactic term that stands other way of regarding the problém of exolc lerms 1S that |

for the expressiosy +e,. Thus, the quotation of the expressior2L is causgd by the attempt to give a semantic definition to a primarily
would bel 2 ' syntactic property. A more syntax-oriented approach was used by

Barzilayet al. [BAO2, I BACO3, Bar0f. In Barzilay’s approach, the
quoted version of an operator that introduces a binding has the
sameshape(i.e. the number of subterms and the binding structure)
as the original one and the variables (both the binding and the

where Term is a type of terms.

Note that quotations can be iterated arbitrarily many times,
allowing us to quote quoted terms. For instantetands for the
term that denotes the term that denotes the numeral 1.

Problems arise when quoting expressions that contain binding
variables. For example, what is the quotatiomafx? There are
several possible ways of answering this question. A commonly
used approactPE88IDH94,[DFH95 IACMO02,/ACMO3] in logical
frameworks such aBIf [Pfe89, LF [HHP9, andlsabelle [PN9Q
Pau94 is to construct an object logic with a concreteoperator
)tlhat has a type like

bound occurrences) are unaffected by the quotation. For instancethere is no way to state and prove meta-theorems that quantify over

the quotation ofx.X is justAx.x.
The advantages of this approach include:

e This approach is simple and clear.

¢ Quoted terms have the same structure as original ones, inherit-
ing a lot of properties of the object syntax.

¢ In all the above approaches, theequivalence relation for
guoted terms is inherited “for free”. For exampbex.x and
Ay.y are automatically considered to be the same term.

e Substitution is also easy: we do not need to re-implement the
substitution that renames binding variables to avoid the capture
of free variables; we can use the substitution of the original
language instead.

To prune exotic terms, Barzilay says thatt[x] is a valid term
whenax.t[x] is asubstitution functionHe demonstrates that it is
possible to formalize this notion in@urely syntacticafashion. In
this setting, the general well-formedness rule for quoted terms with
bindings is the following:

is_subsk {X1, - - - , Xk.t[X]} is_subst{zy, -, z.5[Z]}
op{Xq, -+ X X e n o zg,000 L 21.8[Z]) € Term
whereis_subsh {X1, - - - , Xn.t[X]} is the proposition thatis a sub-
stitution function over variablesy, - - - , xn (in other words, it is a

syntactic version of th#alid predicate of DH94,IDFH9Y). This
proposition is defined syntactically by the following two rules:

is_subsh {X1, -+ , Xn. X{ }
and
iS_SUDSh K {X1, - 2 X, Y1, -+, Yk LK V1)
is_subsf {xq, - - X, zg,--+,7.8[% 21}
iS_subsh {X1 - - - Xn.0p{Y1 - - - Y t[X; V15 -+ 21---2.S[X; 21}}

In this approach thes_subsf {} and\ operators are essentially
untyped(in NuPRL type theory, the computational properties of

untyped terms are at the core of the semantics; types are added on

top of the untyped computational system).

Recursive Definition and Structural Induction Principle. A
difficulty shared by both the straightforward implementations of
the (Term — Term) — Term approach and by the Barzilay’s one
is the problem of recursively defining the Term type. We want to
define the Term type as the smallest set satisfying rilean(d).
Note, however, that unlike rull, rule [2) is not monotonic in the
sense thais_subsk {x, - - - , Xk.t[X]} depends non-monotonically
on the Term type. For example, to say whetket[x] is a term, we
should check whetheiis a substitution function over. It means at
least thafor everyx in Term,t[x] should be in Term as well. Thus
we need to define the whole type Term before usf@g Which
produces a logical circle. Moreover, singehas type(Term —
Term) — Term, it is hard to formulate the structural induction
principle for terms built with the. term constructor.

Variable-Length Lists of Binders. In Barzilay’s approach, for
each numben, is_subs, {} is considered to be a separate operator
— there is no way to quantify ovem, and there is no way to
express variable-length lists of binders. This issue of expressing the
unbounded-length lists of binders is common to some of the other
approaches as well.

Meta-Reasoning.Another difficulty that is especially apparent
in Barzilay’s approach is that it only allows reasoning abowort-

operators or languages, much letasseof languages.

3. Higher-Order Abstract Syntax
with Inductive Definitions

Although it is possible to solve the problems outlined in the previ-
ous Section (and we will return to the discussion of some of those
solutions in Sectiol), our desire is to avoid these difficulties from
the start. We propose a natural model of reflection that manages to
work around those difficulties. We will show how to give a sim-
plerecursive definitiorof terms with binding variables, whidioes
not allowthe construction of exotic terms addes allowstructural
induction on terms.

In this Section we provide a conceptual overview of our ap-
proach; details are given in Sectidn

3.1 Bound Terms

One of the key ideas of our approach is how we deal with terms
containing free variables. We extend to free variables the principle
that variable names do not really mattein fact, we model free
variables asindingsthat can be arbitrarily-renamed. Namely,
we will write bterm{xy, - - - , Xn.t[X]} for a termt over variables
X1, -+, Xn. For example, instead of termxy we will use the
term bterm{x, y.xxy} when it is considered over variablesand
y andbterm{x, y, z.xxy} when it is considered over variables
y and z. Free occurrences of; in t[X] are considered bound
in bterm{xq, - - - , Xn.t[X]} and two «a-equal bterm{} expressions
(“bterms”) are considered to beentical

Not every bterm is necessarily well-formed. We will define the
type of terms in such a way as to eliminate exotic terms. Consider
for example a definition of lambda-terms.

ExAMPLE 1. We can define a set of reflected lambda-terms as the
smallest set such that

e bterm{xq, --- , Xn.Xj}, wherel < i < n, is a lambda-term (a
variable);
o if bterm{xy, - -+ , Xn, Xp41.t[X]} is a lambda-term, then
bterm{xq, - -, Xn.AXn4+1.t[X]}
is also a lambda-term (an abstraction);
o if bterm{xq, - -, Xn.t1[X]} and bternixq, -- - , Xn.to[X]} are

lambda-terms, then
bterm{xy; - - - ; Xn.appty[X]; t2[X1}}
is also a lambda-term (an application).

In a way, bterms could be understood as an explicit coding for
Barzilay’s substitution functions. And indeed, some of the basic
definitions are quite similar. The notion of bterms is also very
similar to that oflocal variable context§FPT99.

3.2 Terminology
Before we proceed further, we need to define some terminology.

DEFINITION 1. We change the notion afubtermso that the sub-
terms of a bterm are also bterms. For example, the immediate sub-
terms of bterrfix, y.xxYy} are bternix, y.x} and bternix, y.y}; the
immediate subterm of btefmiy.x} is btermx, y.x}.

DEFINITION 2. We call the number of outer binders in a bterm
expression itshinding depth Namely, thebinding depthof the
bterm bternfxq, - - - , Xn.t[X]} is n.

DEFINITION 3. Throughout the rest of the paper we use the notion

creteoperators in concrete languages. This approach does not pro-of operatorshape Theshapeof an operator is a list of natural num-

vide the ability to reason about operataisstractly in particular,

bers each stating how many new binders the operator introduces on

the corresponding subterm. The length of the shape list is therefore
the arity of the operator. For example, the shape of-theperator
is [0; O] and the shape of the operator is[1].

The mapping from operators to shapes is also sometimes called

abinding signatureof a languagefPT99/PIo9(.

DEFINITION 4. Let op be an operator with shagdeys; --- ; dy1,
and let btl be a list of btermgby; --- ; by]. We say that btl is
compatiblewith op at deptm when,

1. N=M;
2. the binding depth of btert; is n + dj foreachl < j < N.

3.3 Abstract Operators

Expressions of the forrbterm{X.op{- - - }} can only be used to ex-
press syntax witltoncreteoperators. In other words, each expres-
sion of this form contains a specific constant operafpHowever,

we would like to reason about operators abstractly; in particular,
we want to make it possible to have variables of the type “Op” that

can be quantified over and used in the same manner as operator
constants. In order to address this we use explicit term constructors

in addition tobterm{X.op{- - - }} constants.

The expressiomk bterm{n; “op’; btl}, where ‘dp’ is some en-
coding of the quoted operatop, stands for a bterm with binding
depthn, operatorop and subtermbtl. Namely,

mkbterm{n; op; bterm{xq, ---, Xn, Y1.t1[X; Y11} -+ =
bterm{xy, - -+ , Xn, Yk-tk[X; ¥k1} :: nil}

is bterm{xy, -+, Xn.0p{y1.ta[X; Yal; - - ; Yk t[X; Yi]}}. Here,
nil is the empty list and: is the list cons operator and there-
fore the expressioby :: - - - :: by :: nil represents the concrete list
[b1;--- 5 bnl.

Note that if we know the shape of the operadprand we know
that themk btermexpression is well-formed (or, more specifically,
if we know thatbtl is compatible withop at depthn), then it
would normally be possible to deduce the valuendfsincen is
the difference between the binding depth of any element of the list
btl and the corresponding element of the siapglist). There are
two reasons, however, for supplyingexplicitly:

e Whenbtl is empty (in other words, when the arity op is 0),
the value ofn can not be deduced this way and still needs to be
supplied somehow. One could consider O-arity operators to be a
special case, but this results in a significant loss of uniformity.

e When we donot know whether anmkbterm expression is
necessarily well-formed (and as we will see it is often useful
to allow this to happen), then a lot of definitions and proofs
are greatly simplified when the binding depth ik bterm
expressions is explicitly specified.

Using themk bterm constructor and a few other similar con-
structors that will be introduced later, it becomes easy to reason ab-
stractly about operators. Indeed, the second argumeankiaterm
can now be an arbitrary expression, not just a constant. This has

-

e bterm{xq, - -

o mk bterm{n; op; btl} is a well-formed bterm wheapis a well-
formed quoted operator ardl is a list of well-formed bterms
that is compatible wittop at some depth.

-, Xn.X; } is a well-formed bterm for ki < n;

If we denotebterm{xq,---,X,Y,21,---,2.y} asvar{l; r},
we can restate the base case of the above definitionaa {'r },
wherel andr are arbitrary natural numbers, is a well-formed
bterm”. Once we do this it becomes apparent that the above def-
inition has a lot of similarities with de Bruijn-style indexing of
variables [@B77. Indeed, one might call the numbdrandr the
left and right indices of the variable vlt r}.

It is possible to provide an alternate definition that is closer to
pure HOAS:

e bnd{x.t[x]}, wheret is a well-formed substitution function, is
a well-formed bterm (thénd operation increases the binding
depth oft by one by adding to the beginning of the list dfs
outer binders).

o mkterm{op; btl}, whereop is a well-formed quoted operator,
andbtl is a list of well-formed bterms that is compatible with
op at depth 0, is a well-formed bterm (of binding depth 0).

Other than better capturing the idea of HOAS, the latter defini-
tion also makes it easier to express the reflective correspondence
between the meta-syntax (the syntax used to express the theory of
syntax, namely the one that includes the operatttdbterm bnd,
etc) and the meta-meta-syntax (the syntax that is used to express
the theory of syntax and the underlying theory, in other words, the
syntax that includes the second-order notations.) Namely, provided
that we define theubstbt; t} operation to compute the result of
substituting a closed termfor the first outer binder of the bterm
bt, we can state that

substbnd{x.t1[x]} ; tp} = tq[to] (3)

(wheret1 andt; are literal second-order variables). In other words,
we can state that the substitution operagobstand the implicit
second-order substitution in the “meta-meta-" language are equiv-
alent.

The downside of the alternate definition is that it requires defin-
ing the notion of “being a substitution function”.

3.5 Our Approach

In our work we try to combine the advantages of both approaches
outlined above. In the next Section we present a theory that includes
both the HOAS-style operationbr{d mkterm) and the de Bruijn-
style ones \ar, mkbterm). Our theory also allows deriving the
equivalencefd). In our theory the definition of the basic syntactic
operations is based on the HOAS-style operators; however, the
recursive definition of the type of well-formed syntax is based on
the de Bruijn-style operations. Our theory includes also support for
variable-length lists of binders.

Formal Implementation in a Theorem Prover

cost of making certain definitions slightly more complicated. For In this Section we describe how the foundations of our theory are
example, the notion of “compatible withp at depthn” now be- formally defined and derived in thduPRL-style Computational
comes an important part of the theory and will need to be explicitly Type Theory in theMetaPRL Theorem Prover. For brevity, we
formalized. However, this is a small price to pay for the ability to will present a slightly simplified version of our implementation;
reason abstractly about operators, which easily extends to reasonfull details are available in the extended version of this paper
ing abstractly about languages, classes of languages and so forth. [NKYH05], Appendix].

3.4

There are two equivalent approaches to inductively defining the In our work we make heavy usage of the fact that our type theory
general type (set) of all well-formed bterms. The first one follows allows us to define computatiomgithout stating upfront (or even
the same idea as in Examfile knowing) what the relevant types are. NuPRL-style type theo-

Inductively Defining the Type of Well-Formed Bterms 4.1 Computations and Types

ries (which some even dubbed “untyped type theory”), one may de-
fine arbitrary recursive functions (even potentially nonterminating
ones). Only when proving that such function belongs to a particular
type, one may have to prove termination. Saig7al IAlI87b] for
a semantics that justifies this approach.

The formal definition of the syntax of terms consists of two
parts:

e The definition of untyped term constructors and term oper-
ations, which includes both HOAS-style operations and de
Bruijn-style operations. As it turns out, we can establish most
of the reduction properties without explicitly giving types to all
the operations.

e The definition of the type of terms. We will define the type of

terms as the type that contains all terms that can be legitimately

constructed by the term constructors.

4.2 HOAS Constructors

At the core of our term syntax definition are two basic HOAS-style
constructors:

e bnd{x.t[x]} is meant to represent a term with a free variahle
The intended semantics (which will not become explicit until
later) is thatbnd{x.t[x]} will only be considered well-formed
whent is a substitution function.

Internally, bnd{x.t[x]} is implemented simply as the pair
(0, Ax.t[x]). This definition is truly internal and is used only
to prove the properties of the two destructors presented below;
it is never used outside of this Section (SecloB).

mkterm{op; ts} pairs op with ts. The intended usage of this
operation (which, again, will only become explicit later) is that
it represents a closed tering(a btermof binding depth 0) with
operatorop and subtermss. It will be considered well-formed
whenopis an operator antis a list of terms that isompatible
with opat depth 0. For examplejk term{; bnd{x.x}} is Ax.X.

Internally, mkterm{op; ts} is implemented as the nested pair
(1, (op, ts)). Again, this definition is never used outside of this
Section.

We also implement two destructors:

substbt; t} is meant to represent the result of substituting term
t for the first variable of the bterrbt. Internally, substbt; t}

is defined simply as an applicatight.2) t (wherebt.2 is the
second element of the pdit).

We derive the following property of this substitution operation:
substbnd{x.t1[x]}; to} = t1[to]

where is the computational equality relati@randtl and

to may be absolutely arbitrary, even ill-typed. This derivation
is the only place where the internal definitionsafbstbt; t} is
used.

Note that the above equality is exactly the “reflective property
of substitution” @) that was one of the design goals for our
theory.

o weakdest{bt; bcase op, tsmktcasgop; ts]} is designed to
provide a way to find out whethétis abnd{} or amk term{op; ts}

1in NuPRL-style type theories the computational equality relation (which
is also sometimes called “squiggle equality” and is sometimes denoted
as “~" or “«<—") is the finest-grained equality relation in the theory.
Whena = b is true,a may be replaced with in an arbitrary context.
Examples of computational equality include beta-reductigra[x]b =

a[b], arithmetical equalities (¥ 2 = 3), and definitional equality (an
abstraction is considered to be computationally equal to its definition).

and to “extract” theop andts in the latter case. In the rest of
this paper we will use the “pretty-printed” form feveakdest
— “matchbt with bnd{_} — bcase| mkterm{op; ts} —
mkt.casdop; ts]”. Internally, it is defined as

if bt.1 = 0then bcaseelsemktcasgbt.2.1; bt.2.2].

From this internal definition we derive the following properties
of weakdest

match bnd{X.t[X]} with
bnd{_} — bcase
| mkterm{op; ts} — mktcase[op; ts

= bcase

match mkterm{op; ts} with
bnd{_} — bcase
| mkterm{o; t} — mktcasdo; t]

= mktcasgop; ts]

4.3 Vector HOAS Operations

As we have mentioned at the end of Secfhsome approaches to
reasoning about syntax make it hard or even impossible to express
arbitrary-length lists of binders. In our approach, we address this
challenge by allowing operators where a single binding in the meta-
language stands for a list of object-level bindings. In particular, we
allow representindnd{x1.bnd{xy. - - - bnd{xn.t[Xq; ...; Xn1} - - -}}
as
vbndn; x.t[nth{1; x}; ...; nth{n; x}1}, where ‘hth{i; 1}" is the “i-
th element of the list” function.

We define the following vector-style operations:

e vbndn; x.t[x]} represents a “telescope” of nestedd opera-
tions. It is defined by inducti®hon the natural numben as
follows:

vbnd0; x.t[x]}
vbndn + 1; x.t[x]}

= t[nil]

= bndv.vbndn; x.t[v :: X]}}

We also introducevbndn;t} as a simplified notation for
vbndn; x.t} whent does not have free occurrences«of

o vsubstbt; ts} is a “vector” substitution operation that is meant
to represent the result of simultaneous substitution of the terms
in thetslist for the first|ts| variables of the bterrbt (here|l| is
the length of the list). vsubstbt; ts} is defined by induction on
the listts as follows:

vsubstbt; nil}
vsubstbt; t :: ts}

bt
vsubstsubstbt; t} ; ts}

Below are some of the derived properties of these operations:

bnd{v.t[v]} = vbnd1; hd(v)} (4)

vm,n e N. 5

(vbndm + n; x.t[x]} = vbndm; y.vbndn; zt[y@z]}}) ®)

VI € List. (vsubstvbnd{|l|; v.t[v]}; 1} =t[l]) (6)

vl e List.¥ne N.((n > |I)) = %
(vsubstvbndn; v.t[v]}; 1} = vbndn — |I|; v.bt[l@v]}))

vn e N. ®)

(vbnd[n; I.vsubstvbnd{n; v.t[v]}; 1}} = vbndn; 1.t[11})

where ‘hd” is the list “head” operation, “@" is the list append
operation, L.ist” is the type of arbitrary lists (the elements of a list
do not have to belong to any particular typs)is the type of natural
numbers, and all the variables that are not explicitly constrained to
a specific type stand for arbitrary expressions.

20ur presentation of the inductive definitions is slightly simplified by
omitting some minor technical details. SedKYHO5, Appendix] for
complete detalils.

Equivalence[®) allows the merging and splitting of vectbnd
operations. Equivalencfg)is a vector variant of equivalendg)(
Equivalence@) is very similar to equivalencdg) applied in the
vbndn; |.---} context, except thafgj does not requiré to be a
member of any special type.

4.4 De Bruijn-style Operations

Based on the HOAS constructors defined in the previous two sec-

tions, we define two de Bruijn-style constructors.
e var{i; j} is defined awbndi; bnd{v.vbnd j; v}}}. It is easy to
see that this definition indeed corresponds to the informal
bterm{xq, -+, X, y,21, -+, zr.y}
definition given in SectioB.4

e mk bterm{n; op; ts} is meant to compute a bterm of binding
depthn, with operatorop, and withts as its subterms. This op-
eration is defined by induction on natural numheas follows:

mkbterm{0; op; ts} = mkterm{op; ts}
mk bterm{n + 1; op; ts} =
bnd{v.mk bterm{n; op; mapAt.subsit; v} ts}}

Note that, iftsis a list ofbndexpressions (which is the intended
usage of thenk btermoperation), then the

bnd{v. - - - mapat.subsit; v} ts- - -}

has the effect of stripping the outendfrom each of the mem-
bers of thaslist and “moving” them into a single “mergedihd
on the outside.

We also define a number of de Bruijn-style destructoes,op-

erations that compute various de Bruijn-style characteristics of a

bterm. Since thear andmk btermconstructors are defined in terms

of the HOAS constructors, the destructors have to be defined in
terms of HOAS operations as well. Because of this, these defini-

tions are often far from straightforward.
It is important to emphasize that the tricky definitions that we

o left{t} is designed to compute the “left index” ofvar expres-
sion. Itis defined as

Af.AbAL
matchb with
Y bnd(_} — t0
1+ f(substb; mkterm{l; 0}})(l + 1)
| mkterm{l’; _} — I’

In effect, this recursive function substituteskterm{O; 0}

for the first binding oft, mkterm{1; 0} for the second one,
mk term{2; 0} for the next one and so forth. Once all the binders
are stripped and ankterm{l; 0} is exposed) is the index
we were looking for. Note that here we intentionally supply
mkterm with an argument of a “wrong” typeN instead of
Op); we could have avoided this, but then the definition would
have been significantly more complicated.

As expected, we derive that
VI, r € N.(left{var{l; r}} =1).

right{t} computes the “right index” of avar expression. It
is trivial to define in terms of the previous two operators:
right{t} := bdeptht} — left{t} — 1.

getop(t; op} is an operation such that

vn € N.(getop{mkbterm{n; op; ts} ; op'} = op),
vl,r € N.((getop{varfi; j}; op} = op).

Its definition is similar to that ofeft{}.

subtermét} is designed to recover the last argument of a
mk bterm expression. The definition is rather technical and
complicated, so we omit it; se&NKYHO5, Appendix C] for
details. The main property of theubtermsoperation that we
derive is

¥n € N.vbtl € List.(subtermémk bterm(n; op; btl}} =
mapib.vbndn; v.vsubstb; v}} btl)

The right-hand side of this equivalence is not quite the plain

use here are only needed to establish the basic properties of the «py that one might have hoped to see here. However, when

operations we defined. Once the basic theory is complete, we can

raise the level of abstraction and no usage of this theory will

ever require using any of these definitions, being aware of these

definitions, or performing similar tricks again.
¢ bdeptht} computes the binding depth of terimlt is defined
recursively using th& combinator as
Af.Abmatchbwith
Y bnd(_} — 1+ f(substb; mkterm{0; 0}}) | t
| mkterm{_; .} — O

In effect, this recursive function strips the outer binders from a

btl is a list of bterms with binding depths at leastwhich is
necessarily the case for any well-formetk bterm{n; op; btl},
equivalenced) would allow simplifying this right-hand side to
the desiredtl.

4.5 Operators

For this basic theory the exact representation details for operators
are not essential and we define the type of operators Op abstractly.
We only require that operators have decidable equality and that
there exist a function of the type Op> NList that computes
operators’ shapes.

Using this shape function and thelepthfunction from Sec-

bterm one by one using substitution (note that here we can useyion 13 it is trivial to formalize the ts is compatible with op at

an arbitrarymk btermexpression as a second argument for the
substitution function; the arguments nak btermdo not have

to have the “correct” type) and counts the number of times it
needs to do this before the outermost btermis exposed.

We derive the following properties @idepth

vl,r € N.(bdeptvar{l;r}} = (I +r + 1));
vn € N.(bdeptimk bterm(n; op; ts}} = n).

Note that the latter equivalence only requimego have the
“correct” type, whileop andts may be arbitrary. Since the
bdepthoperator is needed for defining the type of Term of well-
formed bterms, at this point we would not have been able to
express what the “correct” type fts would be.

depthn” predicate of Definitiorld We denote this predicate as
shapecompaftn; op; ts} and define it as

|shapéop}| = |btl|A
Vi € 1..|btl|.bdepthnth{btl; i}} = n 4+ nth{shapdop}; i}

4.6 The Type of Terms

In this section we will define the type of termise(well-formed
bterms), Term, as the type of all terms that can be constructed by
the de Bruijn constructors from Sectidd That is, the Term type
contains all expressions of the forms:

e var{i; j} for all natural numbers, j; or

o mk bterm{n; op; ts} for any natural numbenm, operatorop, and
list of termststhat is compatible witlop at depthn.

The Term type is defined as a fixpoint of the following function
from types to types:

Iter(X) := Image(dom(X); Xx.mk(x)),
where
e Image is a type constructor such thatage(T; X. f[X]) is the
type of all thef[t] fort € T (for it to be well-formed,T must

be a well-formed type and must not have any free variables
except forx);

e dom(X) is a type defined as
(NxN)+(n:N><op:Op><{ts:X List | shapecompatn; op; ts}});

e and mk(x) (where x is presumably a member of the type
dom(X)) is defined as

match X with
inl (i, j) — varfi; j}
| inr (n, op, ts) — mkbterm{n; op; ts} .

The fixpoint oflter is reached by defining
e Termy := Void (an empty type)
e Termy1 := Iter(Termy)
o Term:= U Term,
neN
We derive the intended introduction rules for the Term type:
ieN j eN
var{i; j} € Term
and
neN opeOp tse TermList shapecompatn; op;ts}
mk bterm{n; op; ts} € Term ’

Also, the structural induction principle is derived for the Term
type. Namely, we show that to prove that some propBiiy holds
for any termt, it is sufficient to prove

¢ (Base caselp holds for all variables, that iRR[var{i; j}] holds
for all natural numbersandj;

e (Induction step)P[mk bterm{n; op; ts}] is true for any natural
numbern, any operatorop, and any list of termgs that is
compatible withop at depthn, provided P[t] is true for any
element of the listts.

Note that the type of “terms overvariables” (wheren = O cor-
responds to closed terms) may be trivially defined using the Term
type and the “subset” type constructor {: Term | bdeptHt} =
n}.

5. Conclusions and Future Work

In Sectiondd and[4 we have presented a basic theory of syntax
that is fully implemented in a theorem prover. As we mentioned in

5.1 Higher-Level User Interface

One obvious shortcoming of the theory presented in SecfBbns
andd is that it provides only the basic low-level operations such
asbnd var, subtermsetc It presents a very low-level account of
syntax in a way that would often fail to abstract away the details
irrelevant to the user.

To address this problem we are planning to provide user in-
terface functionality capable of mapping the high-level concepts
to the low-level ones. In particular, we are going to provide an
interface that would allow instantiating general theorems to spe-
cific collections of operators and specific languages. Thus, the user
will be able to write something likereflect language [AX.-;
apply{-; -}1” and the system will create all the components outlined
in Exampldlt

o It will create a definition for the type

Languag@\x.-; apply{-; -}]

of reflected lambda-terms (where Langu@g& a general def-
inition of a language over a list of operatd)s

o |t will state and derive the introduction rules for this type;

o It will state and derive the elimination rule for this type (the
induction principle).

Moreover, we are planning to support even more complicated lan-
guage declarations, such as

t =

e :

int |t =t = v | AX:t.e[x] | apply{e; €}

that would cause the system to create mutually recursive type
definitions and appropriate rules.

Finally, we are also planning to support “pattern bindings” that
are needed for a natural encoding of ML-like pattern matching
(such as the one sketched in P@PLM ARK challengelABET05)).

As far as the underlying theory goes, we believe that the mecha-
nisms very similar to the “vector bindings” presented in Sedigh
will be sufficient here.

5.2

As in Barzilay’s work, the quoted operator approach makes it easy
to define the “unquoting” (or “dereferencing”) operafdiung. If t

is a syntactic term, theffit Junq is the value represented by By
definition,

[opfty; - . - th}lung = op{[tllung; - -

For instance[[2* 3]lung is 2 3 (i.e. 6).

In order to define unquoting on terms with bindings, we need to
introduce the “guard” operatiofi) such that[(t)lunq is t for an
arbitrary expressiot. Then[[Jlung can be defined as follows:

“Dereferencing” Quoted Terms

-3 [tnJlung}-

Mop{xq, - - - Xkt[Xgs ... Xkl -+ 521, -+, Z1.8[21; ... 21} lung =
op{Xg, - -+, Xk-[tL{xad 5 - - -5 Xk lung;
z,- 2.0sl(z1): . . : (2)1lung)-

For example[Ax.2xX]lung = AX.[2* (X)lung = AX.[2]lung *

the introduction, the approach is both natural and expressive, andl{X)llung = AX.2 X.

provides a foundation for reflective reasoning about classes of lan-

guages and logics. However, we consider this theory to be only
the first step towards building a user-accessible uniform reflection
framework and a user-accessible uniform framework for program-

The unquote operation establishes the identity between the orig-
inal syntax and the reflected syntax, making it a “true” reflection.

Note that the type theory (which ensures, in particular, that
only terminating functions may be shown to belong to a function

ming language reasoning and experimentation, where tasks similartyPe) would keep thef Jung operation from introducing logical

to the ones presented in tROPLMARK challengel/ABFT05] can

be performed easily and naturally. In this section we provide an out-
line of our plans for building such frameworks on top of the basic
syntactic theory.

paradoxe@

3This s, obviously, not a proper argument. While a proper argument can be
made here, it is outside of the scope of this particular paper.

Also, since the notion of the quoted operators is fully open-

Gordon and MelhanmGM96] define the type ofi-terms as a

ended, each new language added to the system will automaticallyquotient of the type of terms with concrete binding variables over

get to use thql Jlung operation for all its newly introduced opera-
tors.

5.3 Logical Reflection

After defining syntactic reflection, it is easy to deflogical reflec-
tion. If we consider the proof system open-ended, then the logical
reflection is trivial — whenP is a quotation of a proposition, we
can regard [PJlung” as meaning P is true”. The normal modal
rules for the[Jlung modality are trivially derivable. For example
modus ponens

[P=Qlunqg = [Plung = [Qllung
is trivially true because if we evaluate the fif$fung (remember,

[P = Qllung = ([Plung = [Qllung)
by definition of[Junq), we get an obvious tautology
([Plung = [Qlung) = [Plung = [Qlung.

In order to consider a closed proof system (in other words, if
we want to be able to do induction over derivations), we would
need to define a provability predicate for that system. We are
planning to provide user interface functionality that would allow

a-equivalence. Michael NorrisiNor04] builds upon this work by
replacing certain variable “freshness” requirements with variable
“swapping”. This approach has a number of attractive properties;
however, we believe that the level of abstraction provided by the
HOAS-style approaches makes the HOAS style more convenient
and accessible.

Ambler, Crole, and MomigliancACMO02] have combined the
HOAS with the induction principle using an approach which in
some sense is opposite to ours. Namely, they define the HOAS
operators on top of the de Bruijn definition of terms ushigher
order pattern matchingin a later work [ACMO3] they have de-
scribed the notion oftérms-in-infinite-conteXwhich is quite sim-
ilar to our approach to vector binding. While our vector bindings
presented in Sectidh.3 are finite length, the exact same approach
would work for the infinite-length “vectors” as well.

Acknowledgments

The authors are grateful to Eli Barzilay whose ideas were an in-
spiration for some of the work that lead to this paper. We are also
grateful for his comments on an early draft of this paper.

We are grateful to the anonymous reviewers for their very thor-

users to describe a set of proof rules and the system would generat®ugh and fair feedback and many helpful suggestions.

appropriate proof predicate definitions and derive appropriate rules

(in a style similar to the one outlined in Sect{Bdl for the case of
language descriptions).

6. Related Work

In Section?l we have already discussed a number of approaches

that we consider ourselves inheriting from. Here we would like to
revisit some of them and mention a few other related efforts.

Our work has a lot in common with the HOAS implemented in
Coq by Despeyroux and HirschowitbH94]. In both cases, the

more general space of terms (that include the exotic ones) is later
restricted in a recursive manner. In both cases, the higher-order
analogs of first-order de Bruijn operators are defined and used as dACo?]

part of the “well-formedness” specification for the terms. Despey-
roux and Hirschowitz use functions over infinite lists of variables
to define open terms, which is similar to our vector bindings.
There are a number of significant differences as well. Our ap-
proach is sufficiently syntactical, which allows eliminating all ex-
otic terms, even those that are extensionally equal to the well-
formed ones, while the more semantic approach d@H%4,
DFH9H has to accept such exotic terms (their solution to this prob-

lem is to consider an object term to be represented by the whole

equivalence clasef extensionally equal terms); more generally
while [DH94| states that “this problem of extensionality is recur-
rent all over our work”, most of our lemmas establish identity and
not just equality, thus avoiding most of the issues of extensional
equality. In our implementation, the substitution on object terms is
mapped directly tgg-reduction, while Despeyroust al. [DFH9Y|
have to define it recursively. In addition, we providaraformap-

proach to both free and bound variables that naturally extends to

variable-length “vector” bindings.

While our approach is quite different from the modatalculus
one [DPS97DL99, IDLO1], there are some similarities in the in-
tuition behind it. Despeyrougt al. [DPS9T] says “Intuitively, we
interpretC]B as the type otlosedobjects of typeB. We can iter-

ate or distinguish cases over closed objects, since all constructors

are statically known and can be provided for.” The intuition be-

hind our approach is in part based on the canonical model of the

NuPRL type theory|All87a, [AlI87b], whereeachtype is mapped
to an equivalence relations over the closed terms of that type.

10

References

[AA99] Eric Aaron and Stuart Allen. Justifying calculational logic
by a conventional metalinguistic semantics. Technical Report
TR99-1771, Cornell University, Ithaca, New York, September

1999.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn,

J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios
Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The
POPLmark challenge. Available frorattp://www.cis.
upenn. edu/group/proj/plclub/mmm/, 2005.

[ABF*05]

William Aitken and Robert L. Constable. Reflecting on
NuPRL : Lessons 1-4. Technical report, Cornell University,
Computer Science Department, Ithaca, NY, 1992.

Stuart Allen, Robert Constable, Richard Eaton, Christoph
Kreitz, and Lori Lorigo. TheNuPRL open logical envi-
ronment. In David McAllester, editoRroceedings of the
17N International Conference on Automated Deductieni-
ume 1831 of_Lecture Notes in Atrtificial Intelligencepages
170-176. Springer Verlag, 2000.

Stuart F. Allen, Robert L. Constable, Douglas J. Howe,
and William Aitken. The semantics of reflected proof. In
Proceedings of the'B Symposium on Logic in Computer
Sciencepages 95-197. IEEE Computer Society Press, June
1990.

Simon Ambler, Roy L. Crole, and Alberto Momigliano.
Combining higher order abstract syntax with tactical theorem
proving and (co)induction. ITPHOLs '02: Proceedings

of the 15th International Conference on Theorem Proving
in Higher Order Logics pages 13-30, London, UK, 2002.
Springer-Verlag.

S. J. Ambler, R. L. Crole, and Alberto Momigliano. A
definitional approach to primitive recursion over higher
order abstract syntax. IAroceedings of the 2003 workshop
on Mechanized reasoning about languages with variable
binding pages 1-11. ACM Press, 2003.

William Aitken, Robert L. Constable, and Judith Underwood.
Metalogical Frameworks II: Using reflected decision pro-
cedures.Journal of Automated Reasonin?2(2):171-221,
1993.

[ACE*00]

[ACHA90]

[ACMO2]

[ACMO3]

[ACU93]

http://www.cis.upenn.edu/group/proj/plclub/mmm/
http://www.cis.upenn.edu/group/proj/plclub/mmm/

[All87a]

[AllS7b]

[Art99]

[Art04]

[BAO2]

[BACO3]

[Bar01]

[Bar05]

[CAB*86]

[CFW04]

[Con94]

[dB72]

[DFHY5]

[DH94]

[DH95]

Stuart F. Allen. A Non-type-theoretic Definition of Martin-
Lof’s Types. In D. Gries, editoRroceedings of the™! IEEE
Symposium on Logic in Computer Sciengages 215-224.
IEEE Computer Society Press, June 1987.

Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-
Theoretic LanguagePhD thesis, Cornell University, 1987.

Sergei Artemov. On explicit reflection in theorem proving
and formal verification. In GanzingeGgan99, pages 267—
281.

Sergei Artemov. Evidence-based common knowledge.
Technical Report TR-2004018, CUNY Ph.D. Program in
Computer Science Technical Reports, November 2004.

Eli Barzilay and Stuart Allen. Reflecting higher-order abstract
syntax inNuPRL. In Victor A. Carrdio, Cezar A. Moz,

and Sopteéne Tahar, editorsTheorem Proving in Higher
Order Logics; Track B Proceedings of thet18nternational
Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2002), Hampton, VA, August 20pages 23-32.
National Aeronautics and Space Administration, 2002.

Eli Barzilay, Stuart Allen, and Robert Constable. Practical
reflection inNuPRL. Short paper presented at 18th Annual
IEEE Symposium on Logic in Computer Science, June 22—
25, Ottawa, Canada, 2003.

Eli Barzilay. Quotation and reflection MuPRL and Scheme.
Technical Report TR2001-1832, Cornell University, Ithaca,
New York, January 2001.

Eli Barzilay. Implementing Reflection iNuPRL. PhD thesis,
Cornell University, 2005. In preparation.

Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe,
T. B. Knoblock, N. P. Mendler, P. Panangaden, James T.
Sasaki, and Scott F. Smithmplementing Mathematics with
the NuPRL Proof Development SysterRrentice-Hall, NJ,
1986.

Luis Crus-Filipe and Freek Weidijk. Hierarchical reflection.
In Slind et al. [EBG04, pages 66—81.

Robert L. Constable. Using reflection to explain and enhance
type theory. In Helmut Schwichtenberg, editBrpof and
Computation volume 139 ofNATO Advanced Study Insti-
tute, International Summer School held in Marktoberdorf,
Germany, July 20-August 1, NATO SerigpBges 65-100.
Springer, Berlin, 1994.

N. G. de Bruijn. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theoreimdagaciones
Mathematischg34:381-392, 1972. This also appeared in the
Proceedings of the Koninklijke Nederlandse Akademie van
Wetenschappen, Amsterdam, series A, 75, No. 5.

Jcelle Despeyroux, Amy Felty, and AngrHirschowitz.
Higher-order abstract syntax ioq. In M. Dezani-
Ciancaglini and G. Plotkin, editorfroceedings of the
International Conference on Typed Lambda Calculus and
its Applications volume 902 ofLecture Notes in Computer
Sciencepages 124-138. Springer-Verlag, April 1995. Also
appears eBNRIA research report RR-2556

Jcelle Despeyroux and AndrHirschowitz. Higher-order
abstract syntax with induction iQoq. In LPAR '94:
Proceedings of the 5th International Conference on Logic
Programming and Automated Reasoninglume 822

of Lecture Notes in Computer Sciengeges 159-173.
Springer-Verlag, 1994. Also appears/I&RIA research
report RR-2292

[DL99]

[DLO1]

[DPS97]

[EM71]

[F86]

[FPT99]

[Gan99]

[GM96]

[GMOO03]

[G6d31]

[G6d36]

[GS89]

[GWZ00]

[HAB+]

James Davis and Daniel Huttenlocher. Shared annotations for [Har95]

cooperative learning. IRroceedings of the ACM Conference
on Computer Supported Cooperative LearniSgptember
1995.

11

Jcélle Despeyroux and Pierre Leleu. A modal lambda
calculus with iteration and case constructs. In T. Altenkirch,
W. Naraschewski, and B. Reus, editofypes for Proofs
and Programs: International Workshop, TYPES '98, Kloster
Irsee, Germany, March 1998olume 1657 otLecture Notes

in Computer Scienc@ages 47-61, 1999.

Jcelle Despeyroux and Pierre Leleu. Recursion over objects
of functional type. Mathematical Structures in Computer
Sciencel11(4):555-572, 2001.

Jcelle Despeyroux, Frank Pfenning, and Carsteni@ciann.
Primitive recursion for higher—order abstract syntax. In
R. Hindley, editor,Proceedings of the Third International
Conference on Typed Lambda Calculus and Applications
(TLCA'97), volume 1210 ofLecture Notes in Computer
Science pages 147-163. Springer-Verlag, April 1997. An
extended version is available&schnical Report CMU-C$-
96-172 Carnegie Mellon University.

Andrzej Ehrenfeucht and Jan Mycielski. Abbreviating
proofs by adding new axiomsBulletin of the American
Mathematical Sociefy77:366—367, 1971.

Solomon Feferman et al., editor&urt Godel Collected
Works volume 1. Oxford University Press, Oxford,
Clarendon Press, New York, 1986.

Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract
syntax and variable binding. IRroceedings of 1% |EEE
Symposium on Logic in Computer Sciergages 193+. IEEE
Computer Society Press, 1999.

Harald Ganzinger, editoProceedings of the 18 Interna-

tional Conference on Automated Deductieolume 1632

of Lecture Notes in Artificial IntelligenceBerlin, July 7-10
1999. Trento, Italy.

A. D. Gordon and T. Melham. Five axioms of alpha-
conversion. In J. von Wright, J. Grundy, and J. Harrison,
editors, Theorem Proving in Higher Order Logics: 9th
International Conference, Turku, Finland, August 1996:
Proceedingsvolume 1125 ofLecture Notes in Computer
Sciencepages 173-190. Springer-Verlag, 1996.

Jim Grundy, Tom Melham, and John O’Leary. A reflective
functional language for hardware design and theorem
proving. Technical Report PRG-RR-03-16, Oxford Univerity,
Computing Laboratory, 2003.

Kurt Godel. Uber formal unentscheidbaréatse der principia
mathematica und verwandter systemeMonatshefte ifr
Mathematik und Physji38:173-198, 1931. English version
in [vH67].

K. Godel. Uber die lange von beweisen.Ergebnisse
eines mathematischen Kolloquiun?s23—24, 1936. English
translation in|F+ 86|, pages 397-399.

F. Giunchiglia and A. Smaill. Reflection in constructive
and non-constructive automated reasoning. In H. Abramson
and M. H. Rogers, editordyleta-Programming in Logic
Programming pages 123-140. MIT Press, Cambridge,
Mass., 1989.

H. Geuvers, F. Wiedijk, and J. Zwanenburg. Equational rea-
soning via partial reflection. In J. Harrison and M. Aagaard,
editors,Theorem Proving in Higher Order Logics: fBinter-
national Conference, TPHOLs 200@lume 1869 of ecture
Notes in Computer Sciengeages 162—178. Springer-Verlag,
2000.

Jason J. Hickey, Brian Aydemir, Yegor Bryukhov, Alexei
Kopylov, Aleksey Nogin, and Xin Yu. A listing oMetaPRL
theorieshttp://metaprl.org/theories.pdf.

J. Harrison. Metatheory and reflection in theorem proving:
A survey and critique. Technical Report CRC-53, SRI
International, Cambridge Computer Science Research
Centre, Millers Yard, Cambridge, UK, February 1995.

http://www.inria.fr/rrrt/rr-2556.html
http://www.inria.fr/rrrt/rr-2292.html
http://www.inria.fr/rrrt/rr-2292.html
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-172.ps.gz
http://reports-archive.adm.cs.cmu.edu/anon/1996/CMU-CS-96-172.ps.gz
http://metaprl.org/theories.pdf

[HHP93]

[Hic97]

[Hic99]

[Hic01]

[HL78]

[HNCT03]

[HNK*]

[Mos52]

INHO2]

[NKYHO5]

Robert Harper, Furio Honsell, and Gordon Plotkin. A
framework for defining logics.Journal of the Association
for Computing Machinery40(1):143-184, January 1993. A
revised and expanded verion of '87 paper.

Jason J. Hickey. NuPRL-Light: An implementation
framework for higher-order logics. In William McCune,
editor, Proceedings of the 1% International Conference

on Automated Deductiowolume 1249 ol ecture Notes in
Artificial Intelligence pages 395-399. Springer, July 13-17
1997. An extended version of the paper can be found at
http://www.cs.caltech.edu/” jyh/papers/cadel4_
nl/default.html.

Jason J. Hickey. Fault-tolerant distributed theorem proving.
In GanzingeriGan99, pages 227-231.

Jason J. Hickey. The MetaPRL Logical Programming
Environment PhD thesis, Cornell University, Ithaca, NY,
January 2001.

Gérard P. Huet and Bernard Lang. Proving and applying
program transformations expressed with second-order
patterns.Acta Informatica 11:31-55, 1978.

Jason Hickey, Aleksey Nogin, Robert L. Constable,
Brian E. Aydemir, Eli Barzilay, Yegor Bryukhov, Richard
Eaton, Adam Granicz, Alexei Kopylov, Christoph Kreitz,
Vladimir N. Krupski, Lori Lorigo, Stephan Schmitt, Carl
Witty, and Xin Yu. MetaPRL — A modular logical en-
vironment. In David Basin and Burkhart Wolff, editors,
Proceedings of the 1B International Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs 2008plume
2758 ofLecture Notes in Computer Scienpages 287-303.
Springer-Verlag, 2003.

Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al.
MetaPRL home pagehttp://metaprl.org/|

Andrzej Mostowski. Sentences undecidable in formalized
arithmetic: an exposition of the theory of KurtoGel
Amsterdam: North-Holland, 1952.

Aleksey Nogin and Jason Hickey. Sequent schema for
derived rules. In Victor A. Carfeo, Cezar A. Muioz,

and Sophéne Tahar, editorsProceedings of the 15
International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 2002yolume 2410 of ecture Notes

in Computer Scienc@ages 281-297. Springer-Verlag, 2002.

Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey.
A computational approach to reflective meta-reasoning
about languages with bindings. Technical Report Cal-
techCSTR:2005.003, California Institure of Technology,
2005. Available ahttp://resolver.caltech.edu/
CaltechCSTR:2005.003.

12

[Nor04]
[Par71]

[Pau94]

[PESS]

[Pfe89]

[Plo90]

[PN9O]

[SBGO4]

[Scho1]

[Smig4]

[VH67]

Michael Norrish. Recursive function definition for types with
binders. In Slind et all§BG04, pages 241-256.

R. Parikh. Existence and feasibility in arithmefithe Journal
of Symbolic Logic36:494-508, 1971.

Lawrence C. Paulsonsabelle: A Generic Theorem Prover
volume 828 ofLecture Notes in Computer Scien&pringer-
Verlag, New York, 1994.

Frank Pfenning and Conal Elliott. Higher-order abstract
syntax. InProceedings of the ACM SIGPLAN '88 Conference
on Programming Language Design and Implementation
(PLDI), volume 23(7) ofSIGPLAN Noticespages 199-208,
Atlanta, Georgia, June 1988. ACM Press.

Frank Pfenning. Elf: a language for logic definition and
verified metaprogramming. IRroceedings of thetll IEEE
Symposium on Logic in Computer Scigngages 313-322,
Asilomar Conference Center, Pacific Grove, California, June
1989. IEEE Computer Society Press.

Gordon Plotkin. An illative theory of relations. In R. Cooper,
K. Mukai, and J. Perry, editor§ituation Theory and lIts
Applications, Volume ,Inumber 22 in CSLI Lecture Notes,
pages 133-146. Centre for the Study of Language and
Information, 1990.

L. Paulson and T. Nipkowlsabelle tutorial and user’s man-
ual. Technical report, University of Cambridge Computing
Laboratory, 1990.

Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan,
editors. Proceedings of the 17 International Conference

on Theorem Proving in Higher Order Logics (TPHOLs
2004) volume 3223 ol ecture Notes in Computer Science
Springer-Verlag, 2004.

Carsten Sctrmann. Recursion for higher-order encodings.
In L. Fribourg, editorComputer Science Logic, Proceedings
of the 16" Annual Conference of the EACSIolume 2142

of Lecture Notes in Computer Sciengemges 585-599.
Springer-Verlag, 2001.

B.C. Smith. Reflection and semantics in Lidprinciples of
Programming Languagepages 23-35, 1984.

J. van Heijenoort, editorFrom Frege to @del: A Source
Book in Mathematical Logic, 1879-193darvard University
Press, Cambridge, MA, 1967.

http://www.cs.caltech.edu/~jyh/papers/cade14_nl/default.html
http://www.cs.caltech.edu/~jyh/papers/cade14_nl/default.html
http://metaprl.org/
http://resolver.caltech.edu/CaltechCSTR:2005.003
http://resolver.caltech.edu/CaltechCSTR:2005.003

	Introduction
	Reflection
	Uniform Reflection Framework
	Notation and Terminology

	Previous Models of Reflection
	Higher-Order Abstract Syntax with Inductive Definitions
	Bound Terms
	Terminology
	Abstract Operators
	Inductively Defining the Type of Well-Formed Bterms
	Our Approach

	Formal Implementation in a Theorem Prover
	Computations and Types
	HOAS Constructors
	Vector HOAS Operations
	De Bruijn-style Operations
	Operators
	The Type of Terms

	Conclusions and Future Work
	Higher-Level User Interface
	``Dereferencing'' Quoted Terms
	Logical Reflection

	Related Work

