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Abstract

A method for using monotonicity information
in multivariate Gaussian process regression
and classification is proposed. Monotonicity
information is introduced with virtual deriva-
tive observations, and the resulting posterior
is approximated with expectation propaga-
tion. Behaviour of the method is illustrated
with artificial regression examples, and the
method is used in a real world health care
classification problem to include monotonic-
ity information with respect to one of the co-
variates.

1 INTRODUCTION

In modelling problems there is sometimes a priori
knowledge available, concerning the function to be
learned, which can be used to improve the performance
of the model. Such information may be inaccurate,
and be related to the behaviour of the output variable
as a function of the input variables. For instance, in-
stead of having measurements on derivatives, the out-
put function can be known to be monotonic with re-
spect to an input variable.

For univariate and multivariate additive functions,
the monotonicity can be forced by construction, see
e.g. (Shively et al., 2009). A generic approach for
multivariate models was proposed by (Sill and Abu-
Mostafa, 1997), who introduced monotonicity informa-
tion to multilayer perceptron (MLP) neural networks
using hints that are virtual observations placed appro-
priately in the input space. See also (Lampinen and
Selonen, 1997) for more explicit formulation. How-
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ever, use of hints can be problematic with MLP due
to nonstationarity of the smoothness properties, and
difficulties in the integration over the posterior distri-
bution.

In this paper, we propose a method similar to hint
approach for including mononicity information into a
Gaussian process (GP) model using virtual derivative
observations with a Gaussian distribution. In Gaus-
sian processes smoothness can be controlled in a more
systematic way than in MLP by the selection of a co-
variance function. In this work, integrals are approx-
imated using the fast expectation propagation (EP)
algorithm.

We first illustrate the behaviour and examine the per-
formance of the approach with artificial univariate re-
gression data sets. We then illustrate the benefits of
monotonicity information in a real world multivariate
classification problem with monotonicity for one of the
covariates.

Section 2 presents briefly the Gaussian process with
derivative observations, and Section 3 describes the
proposed method. In Section 4 experiments are shown,
and conclusions are drawn in Section 5.

2 GAUSSIAN PROCESSES AND

DERIVATIVE OBSERVATIONS

Gaussian process (GP) is a flexible nonparametric
model in which the prior is set directly over functions
of one or more input variables, see e.g. (O’Hagan,
1978; MacKay, 1998; Neal, 1999; Rasmussen and
Williams, 2006). Gaussian process models are attrac-
tive in modelling complex phenomena since they allow
possible nonlinear effects, and if there are dependen-
cies between covariates, GP can handle these interac-
tions implicitly.

Let x denote a D-dimensional covariate vector, and the
matrix X, of size N ×D, all N training input vectors.
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We assume a zero mean Gaussian process prior

p(f |X) = N (f |0,K(X,X)), (1)

where f is a vector of N latent values. The covariance
matrix K(X,X) between the latent values depends on
the covariates, and is determined by the covariance
function. Throughout this work, we use the stationary
squared exponential covariance function, which pro-
duces smooth functions, given by

Cov
[

f (i), f (j)
]

= K(x(i),x(j))

= η2 exp
(

− 1
2

∑D
d=1 ρ−2

d (x
(i)
d − x

(j)
d )2

)

, (2)

where η and ρ = {ρ1, . . . , ρD} are the hyperparameters
of the GP model.

In the regression case, having the vector y of N noisy
outputs, we assume the Gaussian relationship between
the latent function values and the noisy observations

p(y|f) = N (y|f , σ2I),

where σ2 is the noise variance and I is the identity ma-
trix. Given the training data X and y, the conditional
predictive distribution for a new covariate vector x∗ is
Gaussian with mean and variance

E[f∗|x∗,y,X,θ] = K(x∗,X)(K(X,X) + σ2I)−1y (3)

Var[f∗|x∗,y,X,θ] = K(x∗,x∗) − K(x∗,X)

×(K(X,X) + σ2I)−1K(X,x∗), (4)

where θ = {η,ρ, σ}.

Instead of integrating out the hyperparameters, for
simplicity we find a point estimate for the values of the
hyperparameters θ, by optimising the marginal likeli-
hood

p(y|X,θ) =

∫

p(y|f ,θ)p(f |X,θ)df ,

and in the computations we use the logarithm of the
marginal likelihood

log p(y|X,θ) = −
1

2
yT (K(X,X) + σ2I)−1y

−
1

2
log |K(X,X) + σ2I| −

N

2
log(2π).

The derivative of a Gaussian process remains a Gaus-
sian process because differentiation is a linear opera-
tor, e.g., (Rasmussen, 2003; Solak et al., 2003). This
makes it possible to include derivative observations in
the GP model, or to compute predictions about deriva-
tives. The mean of the derivative is equal to the deriva-
tive of the latent mean

E

[

∂f (i)

∂x
(i)
d

]

=
∂E
[

f (i)
]

∂x
(i)
d

.

Likewise, the covariance between a partial derivative
and a function value satisfies

Cov
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∂x
(i)
d

, f (j)
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=
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d
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,

and the covariance between partial derivatives
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.

For the squared exponential covariance function (2),
the covariances between function values and partial
derivatives are given by

Cov
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and between partial derivatives by
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where δgh = 1 if g = h, and 0 otherwise. For instance,
having observed the values of y, mean of the derivative
of the latent function f with respect to the dimension
d, is

E

[

∂f∗

∂x∗

d

]

=
∂K(x∗,X)

∂x∗

d

(K(X,X) + σ2I)−1y,

and the variance

Var

[

∂f∗

∂x∗

d

]

=
∂2K(x∗,x∗)

∂x∗

d∂x∗

d

−
∂K(x∗,X)

∂x∗

d

×(K(X,X) + σ2I)−1 ∂K(X,x∗)

∂x∗

d

,

similar to the equations (3) and (4). To use the deriva-
tive observations in the Gaussian process, the obser-
vation vector y can be extended to include also the
derivative observations, and the covariance matrix be-
tween the observations can be extended to include
the covariances between the observations and partial
derivatives, and the covariances between the partial
derivatives.

3 EXPRESSING MONOTONICITY

INFORMATION

In this section we present the method for introduc-
ing monotonicity information to a Gaussian process
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model. Instead of evaluating the derivative every-
where, it is possible to choose a finite number of loca-
tions where the derivative is evaluated when the func-
tion is smooth.

Monotonicity conditions are the following: at the op-
erating point x(i), the derivative of the target function
is non-negative with respect to the input dimension di.

We use the notation m
(i)
di

for the derivative information
where monotonicity is with respect to the dimension
di at the location x(i). We denote with m a set of
M derivative points inducing the monotonicity at the
operating points Xm (the matrix of size M × D).

To express this monotonicity, the following probit like-
lihood

p

(

m
(i)
di

∣

∣

∣

∂f (i)

∂x
(i)
di

)

= Φ

(

∂f (i)

∂x
(i)
di

1

ν

)

(5)

Φ(z) =

∫ z

−∞

N (t|0, 1)dt,

is assumed for the derivative observation. By using
the probit function instead of step function the likeli-
hood tolerates small errors. The probit function in (5)
approaches the step function when ν → 0, and in all
experiments in this work we fixed ν = 10−6.However,
it is possible to adjust the steepness of the step, and
thereby control the strictness of monotonicity informa-
tion with the parameter ν in the likelihood.

To include the information from this likelihood into
the GP model, the expectation propagation algorithm
(Minka, 2001) is used to form virtual derivative obser-
vations.

For now we assume we have a set of locations Xm

where the function is known to be monotonic. By as-
suming a zero mean Gaussian process prior (1) for la-
tent function values, the joint prior for latent values
and derivatives is given by

p(f , f ′|X,Xm) = N (f joint|0,Kjoint),

where

f joint =

[

f

f ′

]

, and Kjoint =

[

Kf ,f Kf ,f ′

Kf ′,f Kf ′,f ′

]

. (6)

In (6) f ′ is used as a shorthand notation for the deriva-
tive of latent function f with respect to some of the
input dimensions, and the subscripts of K denote the
variables between which the covariance is computed.

Using the Bayes rule, the joint posterior is obtained
by

p(f , f ′|y,m) =
1

Z
p(f , f ′|X,Xm)p(y|f)p(m|f ′) (7)

where

p(m|f ′) =

M
∏

i=1

Φ

(

∂f (i)

∂x
(i)
di

1

ν

)

(8)

and the normalisation term is

Z =

∫

p(f , f ′|X,Xm)p(y|f)p(m|f ′)dfdf ′.

Since the likelihood for the derivative observations in
(8) is not Gaussian, the posterior is analytically in-
tractable. We apply the EP algorithm, and compute
the Gaussian approximation for the posterior distri-
bution. The local likelihood approximations given by
EP are then used in the model as virtual derivative
observations, in addition to the observations y.

The EP algorithm approximates the posterior distri-
bution in (7) with

q(f , f ′|y,m) =
1

ZEP
p(f , f ′|X,Xm)p(y|f)

×
M
∏

i=1

ti(Z̃i, µ̃i, σ̃
2
i ),

where ti(Z̃i, µ̃i, σ̃
2
i ) = Z̃iN (f ′

i |µ̃i, σ̃
2
i ) are local likeli-

hood approximations with site parameters Z̃i, µ̃i and
σ̃2

i . The posterior is a product of Gaussian distribu-
tions, and can be simplified to

q(f , f ′|y,m) = N (f joint|µ,Σ). (9)

The posterior mean is µ = ΣΣ̃−1
jointµ̃joint and the co-

variance Σ = (K−1
joint + Σ̃−1

joint)
−1, where

µ̃joint =

[

y

µ̃

]

, and Σ̃joint =

[

σ2I 0

0 Σ̃

]

. (10)

In (10) µ̃ is the vector of site means µ̃i, and Σ̃ is a
diagonal matrix with site variances σ̃2

i on the diagonal.

The desired posterior marginal moments with the like-
lihood (5) are updated as

Ẑi = Φ(zi)

µ̂i = µ−i +
σ2
−iN (zi|0, 1)

Φ(zi)ν
√

1 + σ2
−i/ν2

σ̂2
i = σ2

−i −
σ4
−iN (zi|0, 1)

Φ(zi)(ν2 + σ2
−i)

(

zi +
N (zi|0, 1)

Φ(zi)

)

,

where
zi =

µ−i

ν
√

1 + σ2
−i/ν2

,

and µ−i and σ2
−i are the parameters of the cavity dis-

tribution in EP. These equations are similar to those
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of binary classification with the probit likelihood, and
the EP algorithm is otherwise similar as presented, for
example, in chapter 3 of (Rasmussen and Williams,
2006).

The normalisation term is approximated with EP as

ZEP = q(y,m|X,Xm,θ)

=

∫

p(f , f ′|X,Xm)p(y|f)
M
∏

i=1

ti(Z̃i, µ̃i, σ̃
2
i )dfdf ′

=

∫

N (f joint|µ,Σ)dfdf ′Z−1
joint

M
∏

i=1

Z̃i

= Z−1
joint

M
∏

i=1

Z̃i,

where the normalisation term of the product of Gaus-
sians is

Z−1
joint = (2π)−(N+M)/2|Kjoint + Σ̃joint|

−1/2

× exp

(

−
1

2
µ̃T

joint(Kjoint + Σ̃joint)
−1µ̃joint

)

,

and the remaining terms Z̃i are the normalisation con-
stants from EP.

In the computations we use the logarithm of the nor-
malisation term, and after the convergence of EP, the
approximation for the logarithm of marginal likelihood
is computed as

log ZEP = −
1

2
log |Kjoint + Σ̃joint|

−
1

2
µ̃T

joint(Kjoint + Σ̃joint)
−1µ̃joint +

M
∑

i=1

(µ−i − µ̃i)
2

2(σ2
−i + σ̃2

i )

+
M
∑

i=1

log Φ





µ−i

ν
√

1 + σ2
−i/ν2



+
1

2

M
∑

i=1

log(σ2
−i + σ̃2

i ).

The values for the hyperparameters are found by op-
timising the logarithm of the joint marginal likelihood
approximation for the observations and derivative in-
formation. To use the virtual derivative samples in
the GP model predictions, the approximative predic-
tive mean and variance for the latent variable can be
computed with

E[f∗|x∗,y,X,m,Xm] = K∗,f joint
(Kjoint + Σ̃joint)

−1µ̃joint

Var[f∗|x∗,y,X,m,Xm] = K∗,∗ − K∗,f joint

× (Kjoint + Σ̃joint)
−1Kf joint,∗

analogously to the standard GP prediction equations
(3) and (4).

In classification examples, we assume the probit like-
lihood for class observations

p(c|f) =
N
∏

i=1

Φ(f (i)c(i)),

where now c(i) = {−1, 1} describes the two output
classes. We apply the expectation propagation al-
gorithm for both the class observations and virtual
derivative observations. EP approximates the joint
posterior of f and f ′ similarly to the regression case
in (9), except that the vector of observations y, and
noise σ2I in (10) are now replaced with site approxi-
mations µ̃class and Σ̃class, denoting the mean and vari-
ance site terms given by EP, and associated with class
observations.

The parameter ν in likelihood for virtual derivative
observation causes the desired posterior marginal mo-
ments to be computed slightly differently, depending
on whether the moments are computed for class obser-
vations or derivative observations. For class observa-
tions, the moments are given, for example, in chapter
3 of (Rasmussen and Williams, 2006), and for virtual
derivative observations moments are computed as in
the regression case.

The values for the hyperparameters are found by opti-
mising the joint marginal likelihood approximation of
class observations and virtual derivative observations.
The normalisation term is computed as in regression,
except that again y and noise σ2I in (10) are replaced
with site terms µ̃class and Σ̃class. Furthermore, in the
computation of the normalisation of joint posterior,
the normalisation site terms Z̃class of class observations
are also taken into account.

In classification, the predictions for the latent values
using the class observations and virtual derivative ob-
servations are made by using the extended vector of
site means and extended covariance matrix having site
variances on the diagonal.

3.1 PLACING THE VIRTUAL

DERIVATIVE POINTS

In low dimensional problems the derivative points can
be placed on a grid to approximate monotonicity. A
drawback is that the number of grid points increases
exponentially with regard to the number of input di-
mensions. In higher dimensional cases the distribution
for X can be assumed to be the empirical distribution
of observations X, and the virtual points can be cho-
sen to be at the unique locations of the observed input
data points. Alternatively, a random subset of points
from the empirical distribution can be chosen.

If the distance between derivative points is short
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enough compared to the lengthscale, then monotonic-
ity information affects also between the virtual points
according to the correlation structure. Due to the
computational scaling O((N + M)3), it may be nec-
essary to use a smaller number of derivative points. In
such a case, a general solution is to use the GP predic-
tions about the values of derivatives at the observed
unique data points. The probability of the derivative
being negative is computed, and at the locations where
this probability is high, virtual derivative points are
placed. After conditioning on the virtual data points,
the new predictions for the derivative values at the
remaining unique observed points can be computed,
and virtual derivative points can be added, moved or
removed if needed. This iteration can be continued to
assure monotonicity at the interesting regions.

To place the virtual derivative points between the ob-
served data points, or outside the convex hull of the
observed X, a more elaborate distribution model for
X is needed. Again, the probability of derivative be-
ing negative can easily be computed, and more virtual
derivative points can be placed on locations where this
probability is high.

4 EXPERIMENTAL RESULTS

4.1 DEMONSTRATION

An example of Gaussian process regression with mono-
tonicity information is shown in Figure 1. Subfigure
(a) illustrates the GP prediction (mean + 95% inter-
val) without monotonicity information, with hyperpa-
rameter values found by optimising the marginal like-
lihood. Subfigures (b) and (c) show the predictions
with monotonicity information, with hyperparameter
values that maximise the approximation of the joint
marginal likelihood. Short vertical lines in (b) and (c)
are the locations of virtual derivative points. In Sub-
figure (b), the locations of virtual points are found by
choosing a subset amongst the observed data points,
on the locations where the probability of derivative be-
ing negative is large before conditioning to any mono-
tonicity information (the derivative seen in Subfigure
(d)). In Subfigure (c) the virtual points are placed on
a grid. The predictions in (b) and (c) are similar, and
(e) and (f) illustrate the corresponding derivatives of
the latent functions. Since the probability of deriva-
tive being negative in (e) and (f) at the observed data
range is very low, adding more virtual derivative points
is unnecessary.

The effect of the monotonicity information is illus-
trated also in Figure 2. Subfigures (a)-(c) show the
case without monotonicity information: (a) shows the
marginal likelihood as a function of lengthscale and

noise variance parameters (signal magnitude is fixed
to be one), and (b) and (c) show two different solu-
tions (mean + 95% interval) at two different modes
shown in (a). The mode with the shorter lengthscale
and smaller noise variance (function estimate in (b))
has higher density. Subfigures (d)-(f) show the case
with monotonicity information. Subfigure (d) shows
the approximated marginal likelihood for the obser-
vations and virtual derivative observations. Now the
mode corresponding to the longer lengthscale and the
monotone function shown in (f) has much higher den-
sity. Since virtual observations are not placed densely,
there is still another mode at shorter lengthscale (func-
tion estimate in (e)) although with much lower density.
This shows the importance of having enough virtual
observations, and this second mode would eventually
vanish if the number of virtual observations would be
increased.

4.2 ARTIFICIAL EXAMPLES

We test the Gaussian process model with monotonic-
ity information by performing simulation experiments
on four artificial data sets. We consider the following
functions:

(a) f(x) = 0 if x < 0.5, f(x) = 2 if x ≥ 0.5 (step);

(b) f(x) = 2x (linear);

(c) f(x) = exp(1.5x) (exponential);

(d) f(x) = 2/{1 + exp(−8x + 4)} (logistic),

and draw observations from the model yi = f(xi)+ ǫi,
where xi and ǫi are i.i.d. samples from the uniform dis-
tribution U(xi|0, 1), and from the Gaussian N (ǫi|0, 1).
We normalise x and y to have mean zero and standard
deviation 0.5.

For the Gaussian process with monotonicity infor-
mation, we introduce 10 virtual observations spaced
equally between the observed minimum and maximum
values of x variable. We compare the results of the
model to a Gaussian process with no monotonicity in-
formation. The performances of the models are evalu-
ated using a root-mean-square error (RMSE). The es-
timates for RMSE are evaluated against true function
values on 500 equally spaced x-values.

Table 1 summarises the simulation results. The re-
sults are based on simulations repeated 50 times. Two
sample sizes, N = 100 and N = 200, were used in
the simulations. For the step function, the GP model
with monotonicity information performs worse than
GP without monotonicity assumption because the pro-
posed method has tendency to favour smooth increas-
ing functions. In a case of heavy truncation by the
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Figure 1: Example of Gaussian process solution (mean + 95% interval) without monotonicity information (a),
and the corresponding derivative of the latent function (d). Subfigures (b) and (c) illustrate the solutions with
monotonicity information, and the corresponding derivatives are shown in (e) and (f). The virtual derivative
observations (shown with short vertical lines) in (b) are placed on locations where the probability of derivative
being negative is large (seen in Subfigure (d)). In Subfigure (c) the derivative points are placed on a grid.
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Figure 2: Contour plot of the log marginal likelihood without monotonicity information (a), and the corre-
sponding solutions (b) and (c) at the modes. Subfigure (d) shows contour plot of the marginal likelihood with
monotonicity information, and Subfigures (e) and (f) illustrate the corresponding solutions at the modes. The
locations of virtual observations are shown with short vertical lines in Subfigures (e) and (f).
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Table 1: Root-mean-square errors for the artificial ex-
amples.

function root-mean-square error
N = 100 N = 200
GP GP GP GP

(monot.) (monot.)
step 0.135 0.176 0.109 0.167
linear 0.091 0.068 0.053 0.041
exponential 0.074 0.068 0.054 0.050
logistic 0.078 0.077 0.060 0.062

step likelihood, the result may not be well approxi-
mated with a Gaussian distribution, and thus deriva-
tive information presented by virtual observations can
be slightly biased away from zero. On the other hand,
the GP without monotonicity assumption estimates
the step function with a shorter lengthscale producing
a better fit but with wiggling behaviour. For linear
and exponential functions the GP with monotonicity
assumption gives better estimates, as monotonicity in-
formation favours smoother solutions and prevents the
estimated functions from wiggling. In the case of 200
observations, the differences between the estimates for
the two models were smaller with linear and exponen-
tial functions, as the possibility of overfit decreases.
For logistic function both models gave similar results.

4.3 MODELLING RISK OF

INSTITUTIONALISATION

In this section we report the results of assessing the
institutionalisation risk of users of communal elderly
care services. The risk of institutionalisation was mod-
elled using data produced from health care registers,
and the aim was to study whether a patient becomes
institutionalised or not during the next three months.
The actual study population consisted of patients over
65 years in the city of Vantaa during 2001–2004. In
this study the following seven variables were used as
predictors: age, whether the patient had nursing home
periods, whether the patient had activities of daily
living (ADL) evaluation, maximum memory problem
score, maximum behavioral symptoms score, maxi-
mum number of daily home care visits, and number
of days in hospital. Since only a small number of in-
stitutionalisation events were available in the whole
data set, the training data was balanced such that ap-
proximately half of the patients institutionalised. The
training data set consisted of 1222 observations.

Classification was done using a Gaussian process bi-
nary classification model with the probit likelihood
function, and the squared exponential covariance func-
tion (with an individual lengthscale parameter for each

input variable). We modelled the risk of institutional-
isation with a GP where no information about mono-
tonicity with respect to any of the covariates was as-
sumed. This model was compared to a GP model
where monotonicity information was added such that
the institutionalisation risk was assumed to increase as
a function of age. Virtual observations were placed at
the unique locations of the input training data points.

To test the predictive abilities of these two GP models,
receiver operating characteristic (ROC) curves were
computed for younger and older (the oldest third) age
groups using an independent test data of 20000 ob-
servation periods. The predictive performances of the
models were similar for the younger age group but the
GP model with monotonicity information gave better
predictions for the older age group (Figure 3). As age
increases, the data becomes more scarce and mono-
tonicity assumption more useful.

We also studied the effect of monotonicity information
in the model by comparing the predicted risks of insti-
tutionalisation as a function of age and different daily
home care levels. The predictions for a low-risk sub-
group are shown in Figure 4. The GP model without
monotonicity information gives a slight decrease for
the institutionalisation risk for patients over 80 (Sub-
figure (a)), whereas the GP model with monotonic-
ity information gives smoother results (Subfigure (b)),
suggesting more realistic estimates.
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Figure 3: ROC curves for the probability of institu-
tionalisation of elderly.

5 CONCLUSION

We have proposed a method for introducing mono-
tonicity information to a nonparametric Gaussian pro-
cess model. The monotonicity information is set us-
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Figure 4: Simulated estimates for the probabilities of institutionalisation of elderly as a function of age and daily
home care levels. The estimates using a Gaussian process model are shown in Subfigure (a), and the estimates
using a Gaussian process with monotonicity information in Subfigure (b).

ing virtual derivative observations concerning the be-
haviour of the target function in the desired locations
of input space. In the method a Gaussian approxi-
mation is found for the virtual derivative observations
using the EP algorithm, and the virtual observations
are used in the GP model in addition to the real ob-
servations.

In the cases where the target function is monotonic, a
solution that is less prone to overfitting, and therefore
better, can be achieved using monotonicity informa-
tion. This is emphasized in the cases where there is
only a small number of observations available. When
the target function has flat areas with sharp steps,
the virtual derivative observations can lead to a worse
performance caused by a bias away from zero due to
Gaussian approximation of the truncated derivative
distribution. Therefore virtual derivative observations
implying monotonicity are more useful in the cases
when the target function is smooth. Further, if the
distance between the virtual derivative observations is
too large with respect to the estimated characteristic
lengthscale, the solution can become non-monotonic.
However, by placing and adding the virtual points iter-
atively, a monotonic solution can be made more likely.
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