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Abstract
Current methods for causal structure learning tend to be computationally intensive or intractable
for large datasets. Some recent approaches have speeded up the process by first making hard
decisions about the set of parents and children for each variable, in order to break large-scale
problems into sets of tractable local neighbourhoods. We use this principle in order to apply
a structure learning committee for orientating edges between variables. We find that a combi-
nation of weak structure learners can be effective in recovering causal dependencies. Though
such a formulation would be intractable for large problems at the global level, we show that
it can run quickly when processing local neighbourhoods in turn. Experimental results show
that this localized, committee-based approach has advantages over standard causal discovery
algorithms both in terms of speed and accuracy.

Keywords: Bayesian Network, feature ranking, relevance learning, committee method

1. Introduction
Current methods for causal structure learning tend to be computationally intensive or intractable
for large datasets. Most approaches towards causal structure learning can be categorized into
two classes: constraint-based approaches that use independence tests and score-based tech-
niques that search for Bayesian networks. The former are slow because independence has to be
tested between variables under many different conditioning sets. The latter are slow because of
the possible number of Bayesian networks; a naïve scoring with just 10 variables would have to
consider around 1018 configurations (Robinson, 1977).

Some recent approaches have speeded up the process by finding the network skeleton first
and then doing local neighborhood learning to orient the skeleton edges, such as MMHC
(Tsamardinos et al., 2006). Building the skeleton of a network is an easier task than orientating
the edges as we only look at associations between variables and not the causal relationships
between them.

c○2010 E. Mwebaze and J. A. Quinn



MWEBAZE AND QUINN

In this paper we propose a method for fast structure learning based on finding the set of
parents and children for each variable, and then applying a committee of structure learners to
make a joint decision about edge orientation. Some of the structure learning methods we use
would be intractible when applied globally to a dataset with many variables, but can run rapidly
at neighbourhood level. When the structure learners are based on different principles (e.g. a
mixture of constraint-based and score-based) it is significant when they agree with each other,
and in particular we find that this strategy gives good worst-case accuracy.

The contributions of this paper are:

∙ We generalise previous work on restricting the search space to speed up structure lear-
ning;

∙ We present a novel local structure learning algorithm, EPC, specifically intended for
analysing a target variable and its immediate neighbourhood;

∙ We show how different structure learners can be combined in a committee to give results
with better consistency.

The rest of the paper is organized as follows. In section 2 we discuss the initialization step
for finding the skeleton of a network of variables. Section 3 discusses the causal discovery
committee. We present experimental evidence in section 4, and summarise our findings in
section 5.

2. Skeleton Discovery
The overall aim of skeleton discovery is to consider each variable in a dataset and find the
set of directly neighbouring variables. To find the neighbourhood of one variable, we begin
by considering all variables as potential neighbours and then filtering down this set in two
phases. We first employ Relevance Learning Vector Quantization (RLVQ), a fast prototype-
based classification method, to do an initial feature selection for each variable. The variables
found to have low relevance during this stage are removed from the estimated set of neighbours.
We then apply the HITON algorithm on the resulting variables to narrow down this set.

LVQ and RLVQ are prototype-based classification methods applied in supervised learning.
They employ a distance measure (typically Manhattan distance or quadratic Euclidean distance)
that quantifies the similarity of a given feature vector with a prototype (representative) of any
particular class. The distance measure (Manhattan distance) for two arbitrary vectors x,y ∈ RN

can be defined as:

d(x,y) =
N

∑
j=1

∣∣x j− y j
∣∣ . (1)

Because the features have varied meanings and magnitudes in the data, quantifying their simi-
larity by a uniform distance measure tends to be problematic. These differences are accounted
by relevance learning schemes like RLVQ that employ adaptive scaling factors that scale the
features based on their relevance for classification. This takes the form

di
λ

(
wi,ξ

)
=

N

∑
j=1

λ
i
j
∣∣wi

j−ξ j
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where w denotes a prototype or representative vector of a particular class, ξ denotes a data
vector and the adaptive relevance factors λ i

j are restricted to non-negative values and obey the
normalization ∑

N
j=1 λ i

j = 1. The special case λ i
j = 1/N for all j = 1, . . .N is analogous to the
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original LVQ measure. The RLVQ adapts the prototypes and the relevance factors for each
training run through the data until the error rate is at a minimum. Further details on LVQ and
RLVQ can be obtained from Bojer et al. (2001).

These methods have been used is several applications because on top of being intuitively
easy to understand they are easy to implement and their complexity is controlled by the user.
For our purposes however we draw from the fact that they are fast and have been shown to give
high accuracy in identifying relevant features for classification (Biehl et al., 2007).

HITON is a standard algorithm for feature selection that, assuming the joint data distribu-
tion is faithful to a Bayesian Network, carries out statistical tests on the data to determine the
Markov boundary and the Markov blanket of a target variable. HITON has been proven to
accrue two main advantages over other feature selection algorithms: 1) it reduces the number
of variables in the prediction models roughly by three orders of magnitude relative to the orig-
inal variable set while improving or maintaining accuracy, and 2) it outperforms the baseline
algorithms by selecting smaller variable sets than the baselines (Aliferis et al., 2003). Because
HITON takes several hours to run for datasets with hundreds or thousands of variables, the
RLVQ preprocessing step is useful to speed the process of obtaining Markov boundaries for
each variable.

To summarise, for each variable in the local neighbourhood a set of features relevant for its
classification are obtained using RLVQ (phase 1). For each of these sets of relevant features, the
HITON algorithm is used to further narrow down the set of parents and children of the variable
under consideration. Given this skeleton of undirected edges between variables, a committee of
structure learning methods is then used to vote on the causes (parents) and effects (children), as
described in the next section.

3. Causal Discovery Committees
Once a skeleton of the network is found we apply a structure learning committee for orien-
tating edges between variables. We find that a combination of weak structure learners can be
effective in recovering causal dependencies. Though such a formulation would be intractable
for large problems at the global level, we show that it can run quickly when processing local
neighbourhoods in turn.

The structure learning committee method takes the neighbourhood of each variable and
applies different algorithms to determine whether each neighbour of that variable is a cause or
an effect. If the majority of the algorithms determine that a given neighbour is a cause, then
we classify it as a cause. Effects are classified in the same way. We do not apply any conflict
resolution at the moment; our method might return bi-directional causes. Algorithm 1 shows
the committee voting method.

Algorithm 1 Localized causal discovery committee.
1: input: c1 . . .cN , data vectors for variables C1, . . . ,CN

PC (i), set of parents and children for each variable Ci.
2: for each variable Ci, i = 1 . . .N do
3: for each algorithm Algo j do /* PC, EPC, GES, MWST, LiNGAM, K2 */
4: causes(Ci, j),e f f ects(Ci, j)← Algo j (Ci,PC (i))
5: Ci← majorityVote(causes(Ci, :))
6: Ei← majorityVote(e f f ects(Ci, :))
7: return: {C,E}, causes and effects of variables C1, . . . ,CN .
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In the remainder of this section, we first introduce a novel structure learning algorithm, EPC,
and then list the other committee members.

3.1 Expected Partial Correlation (EPC) Method

EPC is a simple local neighborhood structure discovery algorithm. Given the set of parents and
children of a target variable, it returns a probability of each neighbourhood variable being either
a cause or an effect. It is based on partial correlation as a measure of conditional independence,
which is true in certain cases such as binary or linear Gaussian networks (Baba et al., 2004). We
denote the Pearson correlation coefficient between A and B as ρAB, and the partial correlation
between A and B conditioned on C as ρAB·C.

The algorithm works by considering different three-variable subsets of the target and
neighbourhood. We divide 3-variable acyclic connected models into three interesting classes:
the collider or V-structure (A→C← B); the chain (A→C→ B,A←C← B); and the fork
(A←C→ B), as shown in Figure 1(i-iii). The chain and the fork have the same conditional
independency A ⊥⊥ B | C, while the V-structure has the unique property A ⊥⊥ B but A ̸⊥⊥ B | C.
We only consider variables B which are not directly connected to A, as this would imply a cycle,
which we cannot make any inferences about.

Given a particular sample size and type of distribution, we can work out what distribution
of empirical correlation and partial correlation we expect from each different class. We show
histograms of correlation and partial correlation in simulated networks in Figure 2. 10,000
binary models in each class (collider, chain, fork) were randomly created, with conditional
probability tables sampled from the uniform distribution. We can see that the V-structure is the
only case where conditioning on the variable C increases the scale of the correlation between A
and B, from the distribution of |ρAB·C|− |ρAB| in Figure 2 (right).

The histogram in Figure 2(right) therefore gives us a probability distribution on the likeli-
hood P(δABC|class(A,B,C)), where δABC = |ρAB·C|− |ρAB| and class(A,B,C) can be “collider”
or “chain/fork” as in Figure 1(i-iii). By specifying priors on P(class(A,B,C)) we can then
calculate the probability that A is a cause of C, using the assumption that in the “collider”
class A is always a cause of C, whereas in the “chain/fork” class, there are 3 possible orienta-
tions, in only one of which A is a cause of C. While trying to calculate whether A is a cause
or an effect, we incorporate evidence from each of the Bi’s in the neighbourhood and obtain
P
(
Cause(A,C)|δAB1C,δAB2C, . . . ,δABN−1C

)
for a neighbourhood of size N and threshold at 0.5

to determine whether A is a cause or an effect. Algorithm 2 shows the steps of this calculation.
The algorithm is limited to certain distributions, such as binary or Gaussian networks, where

partial correlation is a measure of conditional independence. The method would fail in non-
linear relationships between variables such as an XOR function. We also do not have an ana-

Figure 1: Possible 3-variable structures: (i) collider, (ii) chain, (iii) fork. Panel (iv) shows an
example local neighbourhood for a variable C. The EPC algorithm orientates the edge
AC by looking at the supporting evidence from each of the Bi’s.
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Figure 2: Histograms of correlation and partial correlation from 10,000 simulated 3-variable
binary networks of each class, with 1000 samples drawn from each. Chains and forks
have indistinguishable correlation distributions.

lytical form for the likelihood function; we currently have to estimate the distribution through
simulations.

However the advantages of the algorithm are as follows. First, it is cheap to run: O(N2) in
the neighbourhood size and O(M) in the sample size. Second, it provides probabilities rather
than categorical outputs – most methods based on CI constraints simply accept or reject a causal
hypothesis. Third, we have the ability to incorporate prior beliefs about the orientations of
edges. Fourth, it is useful as a committee member, as it gives high confidence when there is a
V-structure and low confidence otherwise.

The performance of the EPC algorithm in recovering true causes and effects is evaluated in
section 4.

Algorithm 2 EPC Algorithm to distinguish between local causes and effects.
1: input: c,b1, . . . ,bN, data vectors for target variable C and

set of parents/children B1, . . . ,BN .
2: P(Cause(Bi,C)) for all i, priors for each Bi being a cause of C.
3: for each variable Bi do
4: for each variable B j ̸=i (Bi not a neighbour of B j) do
5: δi j← |ρBiB j ·C|− |ρBiB j |
6: Compute likelihoods L(δi j|class(Bi,B j,C))

where class(Bi,B j,C) ∈ {“collider’, “chain/fork”}
7: causeodds(i)← P(Cause(Bi,C))∏i̸= j (L(δi j|collider)+L(δi j|chain/fork))
8: e f f ectodds(i)← (1−P(Cause(Bi,C)))∏i̸= j 2L(δi j|chain/fork)
9: P(Cause(Bi,C)|c,b1, . . . ,bN)← causeodds(i)

causeodds(i)+e f f ectodds(i)
10: return: P(Cause(Bi,C)|c,b1, . . . ,bN) for each i, posterior probabilities that

each Bi is a cause of C.

3.2 Other Committee Members

Standard algorithms were used in conjunction with EPC to form the structure learning commit-
tee. The strength of the committee method is derived from applying each of these methods to
the same skeleton obtained from Section 2 for each dataset. These methods were selected to
include methods based on different principles. These methods were as follows1.

1. Implementations from four packages were used: BNT (http://www.ai.mit.edu/~murphyk/
Software/BNT/bnt.html), BNT-SLT (http://bnt.insa-rouen.fr/), LiNGAM (http:
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PC : This is a common benchmark constraint-based causal discovery algorithm, introduced by
Spirtes et al. (1993). A confidence level of 0.05 was used with this method.
MWST : The MWST algorithm as introduced by Chow and Liu (1968) is based on the maxi-
mum weight spanning tree. It essentially associates a weight with each edge obtained accord-
ing to some similarity criterion (mutual information between variables or BDeu score) and then
builds the maximum spanning tree of the obtained graph. For our experiments we used the
mutual information between variables as a measure of (conditional) dependence.
GES : The greedy search (GS) algorithm is an implementation of a standard optimization
heuristic. Greedy Equivalent Search is an extension of the GS algorithm that optimizes search-
ing the DAG space by searching in the Markov equivalent space. This method initially starts
with an empty graph, adds arcs until the score cannot be improved then tries to suppress some
irrelevant arcs (Munteanu and Bendou, 2002). For our experiments we used the Bayesian In-
formation Criterion (BIC) as our scoring function with an instantiation cache of 300.
K2 : The K2 algorithm (Cooper and Herskovits, 1992) is a probabilistic algorithm that maxi-
mizes structure probability given the data. It defines the Bayesian measure(BIC/BDeu) which is
a quality measure of the network given the data. We use it in the committee to vote on whether
a feature is an effect of the target variable only and not a cause because it is easier to specify
a node order for the former. For our experiments we used the Bayesian Score (BIC) as our
scoring function.
LiNGAM : LiNGAM (Shimizu et al., 2006) is a more specific technique that attempts to dis-
cover the causal structure in linear non-Gaussian acyclic models. We include it in the committee
because it provides a relatively different technique form the rest of the committee members and
hence can account for certain distributions on which the other members may produce poor
results. For our experiments default settings were used, as provided in the author’s implemen-
tation.

4. Experiments
We test our methods on several standard datasets with known generating structures. The causal
structures found by our methods are evaluated using the same edit distance score based eval-
uation method used to evaluate the NIPS 2008 causality challenge entries. In this method, a
confusion matrix Ci j that specifies the number of relatives confused for another type of relative
is computed. It evaluates the 14 types of relatives in a depth-3 network. A cost matrix Ai j is also
computed to account for the edit distance between the relatives. The edit distance specifies the
number of substitutions, insertions, or deletions to go from one string to another. A score for
a particular structure is then computed as S = ∑i j Ai jCi j. The results are summarised in Table
1 for the different datasets. In this table, we first show the performance of different standard
methods and the EPC algorithm when applied in a local neighbourhood setting. Each of the
algorithms in Table 1 are applied on the same skeleton (for each dataset) obtained using feature
selection/reduction techniques discussed in Section 2. We then show the performance of all
methods when combined in committee, using a majority voting scheme. As a benchmark we
then show performance of the PC algorithm when applied as standard to the whole datasets (no
localization).

Table 2 (a-f) shows confusion matrices for the committee output of three datasets. The con-
fusion matrices give an idea of the recall and precision rates of the method. An ideal confusion
matrix would be a diagonal matrix indicating the true positives and true negatives. The figures
that are not on the diagonal represent the numbers of false positives (spurious causes, bottom

//www.cs.helsinki.fi/group/neuroinf/lingam/) and Causal Explorer (http://discover.
mc.vanderbilt.edu/discover/public/causal_explorer/)
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left) and the numbers of false negatives (spurious independencies, top right).The performance
of our committee method in the LOCANET challenge is given in Table 2 (g), compared to
other participants. Execution time for HAILFINDER using the standard PC algorithm for ex-
ample was 4452.4 seconds, while for the committee this time was 190 seconds for obtaining the
skeleton and 13.3 seconds for obtaining the local graph from the committee.

Table 3 shows other performance metrics used for datasets where we know the ground truth.
We calculate precision (ratio of true causes found to total causes found), recall (proportion of
true causes found to actual number of causes), and Fmeasure = 2×Precision×Recall

Precision+Recall .

Method LUCAS LUCAP ALARM ASIA INSURANCE HAILFINDER
(2000) (2000) (5000) (2000) (2000) (20000)

PC 1.91 2.14 2.43 2.08 2.81 1.79
EPC 0.91 1.81 0.57 2.94 2.2 2.2
GES 1.86 2.14 1.5 2.96 3.38 2.58

MWST 2.86 2.46 2.21 1.7 2.7 1.68
K2 2.18 1.95 2.1 1.78 2.15 1.79

LiNGAM 1.73 3.08 1.93 1.38 2.81 1.43
Committee (M) 1.65 1.9 1.07 2.86 2.46 2.39

PC‡ 2.91 3.38 2.72 3.29 2.81 2.73

Table 1: Evaluation of edit distances for various algorithms with known networks (sample size
in brackets). Committee (M) denotes the committee decision with Majority Voting.
PC‡ represents results obtained on running the standard PC on the whole dataset.

5. Discussion
From the challenge results we can see that our method gives performance comparable to other
entries , while employing a method designed to give fast inference time. We provide two scores

→ X

→ 66 123
X 89 20458

(a) Lucap-EPC

→ X

→ 78 236
X 178 20244

(b) Lucap-Committee

→ X

→ 10 22
X 74 1263

(c) Alarm-EPC

→ X

→ 18 18
X 131 1202

(d) Alarm-Committee

→ X

→ 2 27
X 28 3079

(e) LiNGAM

→ X

→ 7 27
X 45 3057

(f) Committee

Dataset Score Others(range)
CINA 2.32 1.70 - 3.31

REGED 0.22/0.439 0.27 - 0.50
SIDO 3.46 3.31 - 3.48

(g) Results on challenge datasets

Table 2: (a-g) Confusion matrices showing the algorithms with the winning edit distance and
the corresponding majority committee decisions in terms of true causes found (top
left), spurious causes (bottom left), true independencies (bottom right) and spurious
independencies (top right) for Lucap (a-b), Alarm (c-d), and Hailfinder (e-f). (g) LO-
CANET challenge results.
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Dataset/Method PRECISION RECALL FMEASURE

Lucap-EPC 0.43 0.54 0.47
Lucap-Committee 0.30 0.33 0.32

Alarm-EPC 0.12 0.45 0.19
Alarm-Committee 0.12 1.00 0.22

Hailfinder-LiNGAM 0.07 0.07 0.07
Hailfinder-Committee 0.13 0.26 0.18

Table 3: Evaluation of Precision, Recall and Fmeasure scores for three of the datasets contrast-
ing different individual algorithms with the committee

for the REGED dataset; the first one represents the initial submission where our method failed to
find causes but due to the bias in the scoring statistic, this did quite well, the second represents
a score obtained by the committee with the voting threshold decreased. For the benchmark
datasets we find that the quality of the committee decisions is close to the best committee
member in each case. Results obtained for applying PC to whole datasets without localization
generally indicate a lower accuracy rate than either PC with localization or the causal discovery
committee. In principle to increase precision (at the expense of recall) we can increase the
voting threshold upwards towards the unanimous voting level. Conversely it is also possible to
increase the recall rate by altering the voting threshold in the opposite fashion. For applications
where a causal relationship needs to be established with high precision, a unanimous voting
scheme may be used though we have not so far analysed the accuracy of this approach.

The confusion matrices in Table 2 indicate that the committee generally obtains more true
positives (higher recall - Table 3) than the corresponding committee member with the best
average edit distance score. However the committee also generally obtains more false positives
(lower precision) which accounts for the committee score not being as good as that of the best
algorithm in each case.

Currently our method does not explicitly handle conflict of orientation so it is possible to
have a situation where we find that P→ Q and also Q← P. The output is therefore not a DAG.
We conjecture that finding bi-directional causes P↔ Q may indicate the presence of a hidden
variable which influences both P and Q.

We have used our local committee framework with particular structure learning algorithms,
but anticipate that other algorithms can be used in future work. Future research will also look
at weighting the committee members based on derived properties of the dataset.
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Appendix A. Pot-luck challenge: FACT SHEET.
(for a task solved)

Title: LOCANET
Ernest Mwebaze & John A. Quinn
Faculty of Computing & IT
Makerere University
(emwebaze, jquinn)@cit.mak.ac.ug
Task(s) solved: Local Structure Discovery

Method:
Our method uses a relevance learning algorithm (RLVQ) and the HITON algorithm to reduce
the feature set to parents and children of each feature. A novel partial correlation algorithm in
a committee of standard structure learning algorithms then votes on which of the features are
parents and which are children for each Markov boundary obtained from the feature reduction
step. Because we employ feature reduction initially, the method is fast and because a committee
votes on the edge directions, the method yields high accuracy.

∙ Preprocessing : None

∙ Causal discovery : Use of novel probabilistic partial correlation algorithm in committee
of standard structure learning algorithms ; PC, GES, MWST, K2 and LiNGAM.

∙ Feature selection : Use of Relevance Learning Vector Quantization and HITON algo-
rithms

∙ Classification : None

∙ Model selection/hyperparameter selection : Majority vote of committee of algorithms

Results:

Dataset/Task Score 1
CINA 2.32

REGED 0.22/0.439
SIDO 3.46

Table 4: Result table.

Advantages:

∙ Quantitative advantages : Our method employs feature selection techniques to obtain rel-
evant features for classification from which we can obtain relevant features for causality.
This reduces the processing time as indicated in our paper.

∙ Qualitative advantages : We employ a novel method, Expected Partial Correlation (EPC),
that offers comparable results when compared with other standard algorithms on known
datasets as illustrated in Table 1 in the paper.

Method Implementation:
We implemented our method in matlab on an Intel Duo CPU T7100 laptop computer with 1024
MB or RAM.
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The standard algorithms were implemented using standard packages from different individu-
als/organizations these included :-

- Bayesian Network Toolkit (http://www.ai.mit.edu/m̃urphyk/Software/BNT/bnt.html),

- Structure Learning Toolkit (http://bnt.insa-rouen.fr/),

- LiNGAM package (http://www.cs.helsinki.fi/group/neuroinf/lingam/)

- Causal Explorer (http://discover.mc.vanderbilt.edu/discover/public/causal_explorer/).

The whole application is built up into two modules, one that does the feature reduction and the
other that does the structure learning based on the novel algorithm EPC and a host of standard
algorithms including PC, MWST, GES, LiNGAM and K2.
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