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Abstract

Deep belief networks (DBNs) can approxi-
mate any distribution over fixed-length bi-
nary vectors. However, DBNs are frequently
applied to model real-valued data, and so far
little is known about their representational
power in this case. We analyze the approx-
imation properties of DBNs with two layers
of binary hidden units and visible units with
conditional distributions from the exponen-
tial family. It is shown that these DBNs
can, under mild assumptions, model any
additive mixture of distributions from the
exponential family with independent vari-
ables. An arbitrarily good approximation in
terms of Kullback-Leibler divergence of an
m~dimensional mixture distribution with n
components can be achieved by a DBN with
m visible variables and n and n + 1 hid-
den variables in the first and second hidden
layer, respectively. Furthermore, relevant in-
finite mixtures can be approximated arbitrar-
ily well by a DBN with a finite number of
neurons. This includes the important special
case of an infinite mixture of Gaussian dis-
tributions with fixed variance restricted to a
compact domain, which in turn can approx-
imate any strictly positive density over this
domain.
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1. Introduction

Restricted Boltzmann machines (RBMs, Smolensky,
1986; Hinton, 2002) and deep belief networks (DBNs,
Hinton et al., 2006; Hinton & Salakhutdinov, 2006) are
probabilistic models with latent and observable vari-
ables, which can be interpreted as stochastic neural
networks. Binary RBMs, in which each variable con-
ditioned on the others is Bernoulli distributed, are able
to approximate arbitrarily well any distribution over
the observable variables (Le Roux & Bengio, 2008;
Montufar & Ay, 2011). Binary deep belief networks
are built by layering binary RBMs, and the repre-
sentational power does not decrease by adding layers
(Le Roux & Bengio, 2008; Montufar & Ay, 2011). In
fact, it can be shown that a binary DBN never needs
more variables than a binary RBM to model a distri-
bution with a certain accuracy (Le Roux & Bengio,
2010).

However, arguably the most prominent applications in
recent times involving RBMs consider models in which
the visible variables are real-valued (e.g., Salakhutdi-
nov & Hinton, 2007; Lee et al., 2009; Taylor et al.,
2010; Le Roux et al., 2011). Welling et al. (2005) pro-
posed a notion of RBMs where the conditional dis-
tributions of the observable variables given the latent
variables and vice versa are (almost) arbitrarily cho-
sen from the exponential family. This includes the
important special case of the Gaussian-binary RBM
(GB-RBM, also Gaussian-Bernoulli RBM), an RBM
with binary hidden and Gaussian visible variables.

Despite their frequent use, little is known about the
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approximation capabilities of RBMs and DBNs mod-
eling continuous distributions. Clearly, orchestrating
a set of Bernoulli distributions to model a distribu-
tion over binary vectors is easy compared to approx-
imating distributions over 2 C R™. Recently, Wang
et al. (2012) have emphasized that the distribution of
the visible variables represented by a GB-RBM with
n hidden units is a mixture of 2" Gaussian distribu-
tions with means lying on the vertices of a projected n-
dimensional hyperparallelotope. This limited flexibil-
ity makes modeling even a mixture of a finite number
of Gaussian distributions with a GB-RBM difficult.

This work is a first step towards understanding the
representational power of DBNs with binary latent and
real-valued visible variables. We will show for a subset
of distributions relevant in practice that DBNs with
two layers of binary hidden units and a fixed family of
conditional distribution for the visible units can model
finite mixtures of that family arbitrarily well. As this
also holds for infinite mixtures of Gaussians with fixed
variance restricted to a compact domain, our results
imply universal approximation of strictly positive den-
sities over compact sets.

2. Background

This section will recall basic results on approximation
properties of mixture distributions and binary RBMs.
Furthermore, the considered models will be defined.

2.1. Mixture distributions

A mixture distribution pmix(v) over Q is a convex
combination of simpler distributions which are mem-
bers of some family G of distributions over  pa-
rameterized by 8 € ©. We define MIX(n,G) =
{Z?:l pmix(vﬁ)pmix(i) | Z?:l pmix(i) =landVi €
{1,...,n} : Pmix(?) > 0 A pmix(v]i) € G} as the fam-
ily of mixtures of n distributions from G. Further-
more, we denote the family of infinite mixtures of dis-
tributions from G as CONV(G) = { [g p(v|0)p(8) d6 |
Jop(0)d6 =1 and V8 € © : p(0) > 0 A p(v|0) € G}.

Li & Barron have shown that for some family of
distributions G every element from CONV(G) can
be approximated arbitrarily well by finite mixtures
with respect to the Kullback-Leibler divergence (KL-
divergence):

Theorem 1 (Li & Barron, 2000). Let f € CONV(G).
There exists a finite mizture ppi, € MIX(n,G) such
that

027
KL(f|[pmiz) < f? ,

where
o [ [P e
T ) Jiwle)) e

and v = 4[log(3+/e) + a] with

dv

f(v]61)
f(v]62) -

a= sup log
61,02,

The bound is not necessarily finite. However, it follows
from previous results by Zeevi & Meir (1997) that for
every f and every € > 0 there exists a mixture ppix
with n components such that KL(f||pmix) < €+ £ for
some constant ¢ if  C R™ is a compact set and f is
continuous and bounded from below by some n > 0
(i.e, Ve € Q: f(x) > n>0).

Furthermore, it follows that for compact Q@ C R™ ev-
ery continuous density f on £ can be approximated
arbitrarily well by an infinite but countable mixture
of Gaussian distributions with fixed variance o2 and
means restricted to 2, that is, by a mixture of distri-
butions from the family

G () = {p<w> -

! = —
oo (g e} o

for sufficient small o.

2.2. Restricted Boltzmann Machines

An RBM is an undirected graphical model with a
bipartite structure (Smolensky, 1986; Hinton, 2002)
consisting of one layer of m visible variables V' =
(V1,..., Vi) € Q and one layer of n hidden variables
H = (Hy,...,H,) € A. The modeled joint distri-
bution is a Gibbs distribution p(v,h) = e ¢(®:h)
with energy & and normalization constant Z =
Jo [y e €@ dh dv, where the variables of one layer
are mutually independent given the state of the other
layer.

2.2.1. BINARY-BINARY-RBMSs

In the standard binary RBMs the state spaces of the
variables are Q = {0,1}" and A = {0,1}". The energy
is given by £(v, h) = —vT Wh—vTb—c” h with weight
matrix W and bias vectors b and c.

Le Roux & Bengio showed that binary RBMs are uni-
versal approximators for distributions over binary vec-
tors:

Theorem 2 (Le Roux & Bengio, 2008). Any distribu-
tion over Q = {0,1}™ can be approzimated arbitrarily
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well (with respect to the KL-divergence) with an RBM
with k+1 hidden units, where k is the number of input
vectors whose probability is not zero.

The number of hidden neurons required can be reduced
to the minimum number of pairs of input vectors differ-
ing in only one component with the property that their
union contains all observable patterns having positive
probability (Montufar & Ay, 2011).

2.2.2. EXPONENTIAL-FAMILY RBMS

Welling et al. (2005) introduced a framework for con-
structing generalized RBMs called exponential family
harmoniums. In this framework, the conditional distri-
butions p(h;|v) and p(vj|h), i =1,...,n,j=1,...,m,
belong to the exponential family. Almost all types
of RBMs encountered in practice, including binary
RBMs, can be interpreted as exponential family har-
moniums.

The exponential family is the class F of probability
distributions that can be written in the form

k
p(@) = 5 exp (Z@(T”(w)%“)(e)) )

r=1

where @ are the parameters of the distribution and Z
is the normalization constant.’ The functions ®(") and
p") for r =1,...,k, transform the sample space and
the distribution parameters, respectively. Let Z be the
subset of F where the components of & = (z1,...,Zm)
are independent from each other, that is, Z = {p €

F | Ve : play,...,x;m) = p(z1)p(x2) - p(xm)}. For
elements of Z the function ®() can be written as
o) (x) = (3" (21),...,0% (xm)). A prominent sub-

set of Z is the family of Gaussian distributions with
fixed variance 02, G, () C Z, see equation (1).

Following Welling et al., the energy of an RBM with
binary hidden units and visible units with p(v|h) € Z
is given by

k
E(w,h) ==Y " (v)"Wh
r=1

k
=Y o ()" —c"h, (3)

r=1

where M (v) = (8" (21),...,0% (zm)). Note that
not every possible choice of parameters necessarily
leads to a finite normalization constant and thus to
a proper distribution.

!By setting k = 1 and rewriting ® and p accordingly,
one obtains the standard formulation.

If the joint distribution is properly defined, the condi-
tional probability of the visible units given the hidden
is

_ 1 - ) ()T (r) ()
p(vlh) = 7 exp <TE_1 o\ (v) (W h+b )

where Zj, is the corresponding normalization constant.
Thus, the marginal distribution of the visible units
p(v) can be expressed as a mixture of 2" conditional
distributions:

> p(v|h)p(h) € MIX(2",T)
he{0,1}™

p(v) =

2.3. Deep Belief Networks

A DBN is a graphical model with more than two layers
built by stacking RBMs (Hinton et al., 2006; Hinton
& Salakhutdinov, 2006). A DBN with two layers of
hidden variables H and H and a visible layer V is
characterized by a probability distribution p(v, h, ﬁ)
that fulfills

In this study we are interested in the approximation
properties of DBNs with two binary hidden layers and
real-valued visible neurons. We will refer to such a
DBN as a B-DBN. With B-DBN(G) we denote the
family of all B-DBNs having conditional distributions
p(vlh) € G for all h € H.

3. Approximation properties

This section will present our results on the approxima-
tion properties of DBNs with binary hidden units and
real-valued visible units. It consists of the following
steps:

e Lemma 3 gives an upper bound on the KIL-
divergence between a B-DBN and a finite additive
mixture model — however, under the assumption
that the B-DBN “contains” the mixture compo-
nents. For mixture models from a subset of Z,
Lemma 4 and Theorem 5 show that such B-DBNs
actually exist and that the KL-divergence can be
made arbitrarily small.

e Corollary 6 specifies the previous theorem for the
special case of Gaussian mixtures, showing how
the bound can be applied to distributions used in
practice.
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e Finally, Theorem 7 generalizes the results to in-
finite mixture distributions, and thus to the ap-
proximation of arbitrary strictly positive densities
on a compact set.

3.1. Finite mixtures

We first introduce a construction that will enable us
to model mixtures of distributions by DBNs. For
some family G an arbitrary mixture of distributions
Pmix(v) = Z?:lpmix(vli)pmix(i) € MIX(n,G) over
v € () can be expressed in terms of a joint proba-
bility distribution of v and h € {0,1}"™ by defining the
distribution

. _ pmix(i)a if h= €4,
Gmix (h) = { 0, else

()

over {0,1}", where e; is the 4th unit vec-
tor. Then we can rewrite pPmix(v) as pmix(v) =
> h dmix (V| ) gmix (h), where gmix(vlh) € G for all h €
{0,1}™ and gmix(v|e;) = pmix(v]i) for all i =1,... n.
This can be interpreted as expressing pmix(v) as an el-
ement of MIX(2", G) with 2" —n mixture components
having a probability (or weight) equal to zero. Now
we can model pnix(v) by the marginal distribution
of the visible variables p(v) = 7, p(v|h)p(h,h) =
S, p(wh)p(h) of a B-DBN p(v,h,h) € B-DBN(G)
with the following properties:

1. p(v]e;) = pmix(v]i) for i =1,...,n and
2. p(h) =>; p(h, ﬁ) approximates gmix(h).

Following this line of thoughts we can formulate our
first result. It provides an upper bound on the KL-
divergence of any element from MIX(n,G) and the
marginal distribution of the visible variables of a B-
DBN with the properties stated above, where p(h)
models ¢mix(h) with an approximation error smaller
than a given e.

Lemma 3. Let ppiz(v) = Do) Pmia(V|8)pmis(i) €
MIX(n,G) be a mizture with n components from a
family of distributions G, and qmi(h) be defined as
in (5). Let p(v, h,h) € B-DBN(G) with the properties
p(v|e;) = pmiz(v|i) fori=1,...,n and Yh € {0,1}" :
Ip(R) — gmiz(R)| < € for some € > 0. Then the KL-
divergence between ppi, and p is bounded by

KL(p”pmiw) S B(Gapmim 6) )
where
B(Gpmin€) = ¢ [ alv)3(o) dv

Q
+2"(14¢€)log(l+e)

with

a(v) =) p(v|h)
h

and

(o5

Proof. Using |p(h) — ¢mix(h)| < € for all h € {0,1}"
and pmix(v) = >_p, P(V|h)gmix (k) we can write

p(v) = p(v|h)p(h)
h
= Zp(v|h)((hnix(h) + p(h) - Qmix(h))
h
= puix(v) + Y p(v|R)(p(h) = Gmix(h))
h

< pmix(v) + Oé(’l))e )

where a(v) is defined as above. Thus, we get for the
KL-divergence

KL (pllpnis) = J plo)tog (20 av
< Q/ I e K
—F(e,w)

€ 8 ) )
f//a—EF(e,v)dedv
Q0

using F'(0,v) = 0. Because 1+ ze < (1 +z)(1 + €) for
all z,e > 0, we can upper bound %F(e, v) by

%F(e,v) = a(v) [1 +log (1 + p::zlfﬂ

a(v)
< a(v) [1 +log ((1 * o) )ﬂ
= a(v) [1 + B(v) + log(1 + ¢)]

with S(v) as defined above. By integration we get

F(e,v) = /06 %F(E,v)dé
< a()B(v)e+ a(v)(l+e)log(l+e) .

Integration with respect to v completes the proof. [

The proof does not use the independence properties of
p(v|h). Thus, it is possible to apply this bound also to
mixture distributions which do not have conditionally
independent variables. However, in this case one has to
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show that a generalization of the B-DBN exists which
can model the target distribution, as the formalism
introduced in formula (3) does not cover distributions
which are not in Z.

For a family G C 7 it is possible to construct a B-
DBN with the properties required in Lemma 3 under
weak technical assumptions. The assumptions hold for
families of distributions used in practice, for instance
Gaussian and truncated exponential distributions.

Lemma 4. Let G C I and ppna(v) =
o Pmiz(V]0)Pmiz(i) € MIX(n, G) with

Pmiz(v]i) = — eXp (Z &) (v)T ) (90 ))) (6)

for i« = 1,....,n and corresponding parameters
0N, ...,0") . Let the distribution qmiz(h) be defined
by equation (5). Assume that there exist parameters
b") such that for all ¢ € R™ the joint distribution
p(v,h) of v € R™ and h € {0,1}"™ with energy

k
h)=> oM (v)"

is a proper distribution (i.e., the corresponding nor-
malization constant is finite), where the ith column of
W) s u()(0D) —b("). Then the following holds:

For all € > 0 there exists a B-DBN with joint distri-
bution p(v, h,h) = p(vlh)p(h,h) € B-DBN(G) such
that

(W(”h + b(”) +cTh

=p(vle;) fori=1,...,n and

p(h) —

Z) pmiz(”“)

ii) Yh € {0,1}"™ : dmiz(R)] < €.

Proof. Property i) follows from equation (4) by setting
h = e; and the ith column of W) to u(")(9®) — ().
Property ii) follows directly from applying Theorem 2
to p.

O

For some families of distributions, such as truncated
exponential or Gaussian distributions with uniform
variance, choosing (") = 0 for r = 1, ..., k is sufficient
to yield a proper joint distribution p(v,h) and thus a
B-DBN with the desired properties. If such a B-DBM
exists, one can show, under weak additional assump-
tions on G C Z, that the bound shown in Lemma 3 is
finite. It follows that the bound decreases to zero as
€ does.

Theorem 5. Let G C I be a family of densities
and priz(v) = D¢ Pmis(V|)pmiz(i) € MIX(n,G)

with pmiz(v|i) given by equation (6). Furthermore, let
Gmiz(R) be given by equation (5) and let p(v,h,h) €
B-DBN(G) with

(i) pmic(v]i) = p(v|e;) fori=1,....n
(it) Yh € {0,1}" : |p(h) = gmiz(h)| <€
(iii) Yh € {0,1}" : s{p(v\h)ﬂfb(r)(v)"l dv < 00.

Then B(G, pmis, €) 18 finite and thus in O(e).

Proof. We have to show that under the conditions
given above [, a(v)3(v) dw is finite.

We will first find an upper bound for B(v) =
log (1 + p[:‘s&)) for an arbitrary but fixed v. Since
Pmix(v) =

K3
tion, by defining ¢* = argmin; pmix(v|i) and h* =
arg maxp, p(v|h) we get

> Pmix(V]1)Pmix(2) is a convex combina-

o P(elR)
pmix(v|i*)

(7)

The conditional distribution pmix(v|i) of the mixture
can be written as in equation (6) and the conditional
distribution p(v|h) of the RBM can be written as in
formula (4). We define

(v) p(vlh)
pmlx(v Z melx(v| )pmlx( )

u(r)(h) —W™h + b

and get

p(v]h") exp (Z’le ™) (,U)Tu(r)(h*))
P () exp (S, @0 (0) T (000)))

— exp (i o0 (v [ ™) (h*) — u(”')(e(i*))D
< exp ZZ ’ ’ (T) (h*) —

r=1j=1

(7")(0( ))’

Note that the last expression is always larger or equal
to one. We can further bound this term by defining

ope
g (h7) =

(6

(r —
€ = maxu

and arrive at

N k
H) ¢ o (Zs~>|¢<r><v>||1> C®

pmix(v r—1
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By plugging these results into the formula for 8(v) we
obtain

) n P(v|h*)
Alo) < log [”2 p<|>]

k
142" exp (Z 3 II@(T)(v)Ihﬂ

r=1

k
2"+ exp (Z v I‘P(’”)(’v)Hl)]

r=1

(®)
< log

< log

= (n+1)log(2 +Zsr>||<1><r> )1 -

In the third step, we used that the second term is
always larger than 1. Insertion into [, a(v)S(v)dv
leads to

/a(v)/é’(v) dv
Q
+Z§(T)||¢’ )y

2" (n+1) log( )

+ZZ€<’”/ k)| @) dv . (9)

h r=1

(n+1)log(2

which is finite by assumption. O

3.2. Finite Gaussian mixtures

Now we apply Lemma 4 and Theorem 5 to mixtures
of Gaussian distributions with uniform variance.

The KL-divergence is continuous for strictly positive
distributions. Our previous results thus imply that
for every mixture pyix of Gaussian distributions with
uniform variance and every ¢ > 0 we can find a B-DBN
p such that KL(p||pmix) < 0. The following corollary
gives a corresponding bound:

Corollary 6. Let Q = R™ and G, (9 ) be the family of
Gaussian distributions with variance 2. Let e > 0 and

pmiz(v) = Zi:l pmiz(v| )pmix(i) € MIX(naGU( ))

mizture of n distributions with means z(V € R™, i =
1,...,n. By
D= max {‘z,(:) }
rs€{l,...,n}
ke{l,...,m}

we denote the edge length of the smallest hypercube
containing all means. Then there exists p(v,h,h) €
B-DBN(G,(Q)), withVh € {0,1}" : |p(h) —gmiz(h)| <

€ and pri(v]i) = p(vle;), i =1,...,n, such that

KL(p”pmix)

n TL2 \/in
<e2 ((n +1)log(2) +m <(J/D)z + ﬁ(a/D)))
+2"(1+¢€)log(l+e¢) .

Proof. In a first step we apply an affine linear trans-
formation to map the hypercube of edge length D to
the unit hypercube [0, 1]". Note that doing this while
transforming the B-DBN-distribution accordingly does
not change the KL-divergence, but it does change the
standard deviation of the Gaussians from o to o/D.
In other words, it suffices to show the above bound for
D =1and 2z €[0,1]™

The energy of the Gaussian-Binary-RBM p(v, h) is
typically written as

1 1 1
viv— =vTb— —v"Wh—-¢c"h |,

E(v, h) = 202 o2 o2

with weight matrix W and bias vectors b and ¢. This
can be brought into the form of formula (3) by setting
k=2 ¢0") = v, o2 (v;) = 02, WD = W/o?,
W® =0,b" =b;/02, and b* = 1/20%. Withb =0
(and thus bV = 0), it follows from Lemma 4 that a
B-DBN p(v, h,h) = p(v|h)p(h, h) with properties (i)
and (ii) from Theorem 5 exists.

It remains to show that property (iii) holds. Since the
conditional probability factorizes, it suffices to show
that (iii) holds for every visible variable individually.
The conditional probability of the jth visible neuron
of the constructed B-DBN is given by

Lo sy
2mo? 202

where the mean z;(h) is the jth element of Wh. Using
this, it is easy to see that

p(vjlh) =

o0

/ Zp<vj|h>|¢<2><vj>|dvj -/

because it is the second moment of the normal distri-

p(vj|h)vj2» dv; < o0
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bution. For [ p(v;|h)[¢™) (v;)| dv; we get

”J_ZJ(”))Q> v; dv;

2 (h) W / exp( 2

2

# | (02

= —z;(h) + 2z;(h) /O " (v m)de,

+ 2 /Oo e ? tdt
_2 o [t
Vara? )\ 207

\/\/é;exp (22@) §n+\/\/§; . (10)

In the last step we used that z;(e;) = zj(i) € [0,1]
by construction and thus z;(h) can be bounded from
above by

< zj(h) +

h) = hizj(e;) <n . (11)
=0

Thus it follows from Theorem 5 that the bound from
Lemma 3 holds and is finite. To get the actual bound,
we only need to find the constants €1 and €@ to
be inserted into (9). The first constant is given by

(i)
ZJ (h) _ A

€W = max; p; - |. It can be upper bounded

’(h) < -3, as an application of equation

@) _

by max; p
(11) shows. The second constant is given by &
max; p,; |2%2 — 202| = 0. Inserting these variables into
inequality (9) leads to the bound. O

The bound B(G4(£2), Pmix, €) is also finite when Q is
restricted to a compact subset of R”. This can easily
be verified by adapting equation (10) accordingly.

Similar results can be obtained for other families of
distributions. A prominent example are B-DBMs with
truncated exponential distributions. In this case the
energy function of the first layer is the same as for
the binary RBM, but the values of the visible neurons
are chosen from the interval [0,1] instead of {0,1}. It
is easy to see that for every choice of parameters the
normalization constant as well as the bound are finite.

3.3. Infinite mixtures

We will now transfer our results for finite mixtures
to the case of infinite mixtures following Li & Barron
(2000).

Theorem 7. Let G be a family of continuous dis-
tributions and f € CONV(G) such that the bound

from Theorem 1 is finite for all ppmizrn, € MIX(n,G),
n € N. Furthermore, for all pmizn € MIX(n,G),
n € N, and for all ¢ > 0 let there exist a B-DBN
in B-DBN(G) such that B(G, pmiz, €) is finite. Then
for all € > 0 there exists p(v, h, h) € B-DBN(G) with
KL(fllp) < ¢

Proof. From Theorem 1 and the assumption that the
corresponding bound is finite it follows that for all € >
0 there exists a mixture p.;.,, € MIX(n/,G) with
n' > 2c}7y/e such that KL(f||pmixn) < §-

By assumption there exists a B-DBN € B-DBN(G)
such that B(G, pyien’, €) is finite. Thus, one can de-
fine a sequence of B-DBNs (p;)e € B-DBN(G) with
¢ decaying to zero (where the B-DBNs only differ
in the weights between the hidden layers) for which

€é—0

it holds KL(pe||Pmixny) — 0. This implies that
pe =3 DPmixny Uniformly. Tt follows KL(f]||pe) =9
KL(f||Pmixr’)-  Thus, there exists € such that
IKL(f|lpe) — KL(fl|Pmix-r’)| < €/2. A combination of
these inequalities yields

KL(flper)
< |KL(prsl)*KL(f”pmlx-n')|+KL(prm1x-n') e

O

This result applies to infinite mixtures of Gaussians
with the same fixed but arbitrary variance o2 in all
components. In the limit ¢ — 0 such mixtures can
approximate strictly positive densities over compact
sets arbitrarily well (Zeevi & Meir, 1997).

4. Conclusions

We presented a step towards understanding the rep-
resentational power of DBNs for modeling real-valued
data. When binary latent variables are considered,
DBNs with two hidden layers can already achieve good
approximation results. Under mild constraints, we
showed that for modeling a mixture of n pairwise inde-
pendent distributions, a DBN with only 2n 4 1 binary
hidden units is sufficient to make the KL-divergence
between the mixture pnix and the DBN distribution
p arbitrarily small (i.e., for every 6 > 0 we can find
a DBN such that KL(p||pmix) < d). This holds for
deep architectures used in practice, for instance DBNs
having visible neurons with Gaussian or truncated ex-
ponential conditional distributions, and corresponding
mixture distributions having components of the same
type as the visible units of the DBN. Furthermore, we
extended these results to infinite mixtures and showed
that these can be approximated arbitrarily well by
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a DBN with a finite number of neurons. Therefore,
Gaussian-binary DBNs inherit the universal approx-
imation properties from additive Gaussian mixtures,
which can model any strictly positive density over a
compact domain with arbitrarily high accuracy.
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