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Abstract number of algebraic constraints in the trifocal tensor is re-

duced if cameras mutually image their epipoles. This ge-
We formulate multiple-view geometry for omni-directional ometrical condition restricts the geometrical configuration
and panorama-camera systems. The mathematical formu-of pin-hole cameras, because multiple pin-hole camera sys-
lations enable us to derive the geometrical and algebraic tems can not always observe the epipoles of their cam-
constraints for multiple panorama-camera configurations. eras. Here, we assume omni-directional cameras are lo-
The constraints permit us to reconstruct three-dimensional cated parallel on the same plane. These omni-directional

objects for a large feasible region. camera systems satisfy the geometrical condition that they
always observe the epipoles of their cameras, because the
1. Introduction omni-directional camera always images the other cameras.

Therefore, Sato’s condition could be achieved with multiple

In this paper, we analyze the geometrical configurations of ©mni-directional camera systems.

omni-directional camera systems fulfilling the conditions  In this study, we first define the panorama-camera model

for the multiple-view geometry to reduce the number of using the geometrical concept of line camera. Next,

constraints for the multiple camera systems. This is the we show the mathematical equivalence of the panorama-

first step to establish the multiple-view geometry for omni- camera model and the hyperbolic-camera model. Finally,

directional camera systems as an extension from multiple-we formulate multiple-view geometry for panorama-camera

view geometry for pin-hole camera systems to multiple- systems and derive the geometrical and algebraic con-

view geometry for omni-directional camera systems. straints for multiple panorama-camera configurations.
Multiple-view geometry for pin-hole cameras studied in

the computer vision community. The well-known alge- .

braic constraints for the multiple-view geometry were in- 2. Panoramic Image

troduced, such as epipolar constraints equivalently bilinear

form [1], [2] for stereo views, the trifocal tensor [2], [3] for A sequence of pin-hole camera images enables us to syn-

three views, the quadrifocal tensor [4], [5] for four views Lhesize awideT\;]iewimige_co;n_paring]:to the image obser;/_ed
and the factorization method [6] for multiple views. On yacamera. e synthesize 'mage from a sequence ot im-
the other hand, T. Svoboda, T. Pajdla and V. Hlavac in- ages is generally called a panoramic image. Since a point

troduced the geometrical constraint for stereo systems ofand a line are fundamental eIer_nents for imaging, many
omni-directional cameras [7]. Furthermore, T. Sogo, H camera models could be geometrically constructed from the

Ishiguro and M. M. Trivedi introduced the multiple omni- two essential elements for imaging. Therefore, we formu-

directional camera systems for localization and tracking [8]. Igte a camera model with lines and points for our applica-

They analyzed the combinatorial property of point corre- tions.

spondences for the multiple omni-directional camera sys-

tems anq they solved thg pomt'cor'respondences problerrzll Line-Camera Model

for real-time human tracking which is a NP-hard problem

using their N-ocular stereo camera system. However, threeDefinition 1 A line camera is a collection of rays which

or more view geometrical constraints are not clearly repre- pass through a single point on a plane in a space. A line-

sented for the omni-directional cameras. Our aim in this camera model consists of a line-camera center which is the

study is to derive the geometrical and algebraic constraintssingle point, an image line and a camera axis which inter-

for multiple omni-directional cameras. sects the line-camera center and is parallel to the image
Recently, T. Sugimura and J. Sato proved [9] that the line.



We assume that the line-camera cer@r= (0,0,0)"
is located at the origin of the world coordinate system. For
the line camera axis,., we setr, = k(0,0,1)" for k €
R, that is, the direction of. is the direction of the: axis.
For the image lind of the line camera on the-z plane
(y = 0), apointX = (X,0,2)" in a space is projected to
the pointz = (x,0) " on the image lind according to the
formulationz = fZ, wheref is the focal length of the line @) (b)
camera.

Figure 2: The parallel translation of a line camera constructs
a line-motion camera.

Definition 3 A panorama camera is a collection of rays
which pass through a single point in a space. A panorama
camera consists of a panorama-camera center which is the
Figure 1: A line-camera model. single point, a cylindrical-image surface and a camera axis
which intersects the panorama-camera center and is paral-
lel to the cylindrical-image surface.

P ; We assume that the panorama-camera ce6lgr =

2.2. Line-Motion Camera Model (0,0,0)" is located at the origin of the world coordi-

The motion of a line camera along the direction of the  nate system. For the line camera axis we setr, =

axis yields a collection of image ling$, };__, as illustrated  £(0,0,1)" for k¥ € R, that is, the direction ofr, is

in figure 2 (a). In figure 2 (b)d; is the distance between the direction of thez axis. A pointX = (X,Y,2)"

the linesl; andl; ;. If we setd; — 0, the collection of the  in a space is projected to the poia, = (:I;pyypyzp)—r

image lines{l,}}_; forms a rectangular image plane. As- on the cylindrical-image surface according to the formu-

suming the collection of parallel imaging lines as a single |ation =, = ﬁX, where f is a focal length of

camera model, such a camera model has the same geomefhe panorama camera, as illustrated in figure 3 (b). Here,

rical property with a normal camera with respect to the  we transform the cylindrical-image surface to a rectangu-

direction. lar panoramic image. We set a point on the rectangu-
lar panoramic image i = (u,,v,) . The pointsp

Definition 2 A line-motion camera is a collection of rays and« satisfy the equations, = f,tan"* z—z andv, =

which pass tr_]rough a.smgle I_|ne in a space. A Img—mguon fotan~! —Z2— wheref, is a scale factor for transform-
camera consists of a line-motion camera center which is the’ Vo ty, .
single line and a image plane. ing from the cylindrical-image to the rectangular image.

A line-motion camera projects a poi = (X,Y, Z)"
in a space to the point = (z,) " on the rectangular im- Te | - Uiy
age plane according to the equations- f% andy =Y, < ST
wheref is the focal length of the line-motion camera.

2.3. Panorama-Camera Model

The rotation of a line camera around the camera &xis @ (b)

yields a collection of image linefl;} , and a collection

of planes{«;}?_, as illustrated in figure 3 (a). The plane

o includes the image ||na and the line-camera centér. Figure 3: (a) . The rotation of a line camera constructs a
In figure 3 (a),w; is the angle between the planes and panorama-camera model. We segtis the angle between
aip1. Ifwe setw; — 0 andl,,; = Iy, the collection of the planes which pass through the camera cdafitand the
the parallel image line§l,;}7_, forms a cylindrical-image ~ image linesl; andl;,, respectively. (b) : A panorama-
surface. We consider that the collection of these image linescamera model.

{l;}™_, and the camera centéf construct a camera model.



3. Hyperbolic-Camera Model

An omni-directional camera is constructed with a pin-hole
camera and a mirror. A hyperbolic camera enables to imag
the largest region in such omni-directional cameras [10].
We deal with a hyperbolic camera which practically ob-
serves an omni-directional image. In figure 4, the focal
point of the hyperbolic surfacé is F = (0,0,0)" at the
origin of the world coordinate system. The camera center of
the hyperbolic camera i€ = (0,0, —2¢). The hyperbolic-
camera axisy, is the line which connect€’ and F'. We set

the hyperbolic surfacé' : % — (zj{i;)z = —1, where
e=+a%2+ b2 ApointX = (X,Y,Z)" in a space is pro-
jected to the poink = (z,y, 2) " on the hyperbolic surface

S according to the formulation; = A X, where

\ = +a?
W X2+ Y2+ 22FeZ

This relation betweenX and x is satisfied, if the line,
which connects the focal poirnE’ and the pointX, and
the hyperbolic surfac& have at least one real common
point. Furthermore, the sign of parameteidepends on
the position of the pointX [7]. Hereafter, we assume
that the relation of equation (1) is always satisfied. Set-
ting m (u,v) T to be the point on the image plane

the pointa on S is projected to the pointn on = accord-

ing to the equationss = f_*- andv = f_/—, where

f is the focal length of the hyperbolic camera. There-
fore, a pointX = (X,Y,Z)T in a space is transformed
to the pointm asu = (QQJFQQZ)Zﬂfb“:X d

fa?y

U= (@722 2420y X0 47V2 1 20)

@)

X24Y2+4+22) an

Figure 4: A hyperbolic-camera model. A poiitin a space
is transformed to the point on the hyperboloid and: is
transformed to the point: on image plane. The geomet-

rical property of reflected ray constructs the camera model

with a hyperbolic mirror.

4. Camera-Model Transformation

to be the panorama-camera center and the the focal point of
the hyperbolic surfac§, respectively, we locat€’, and F'
at the origin of the world coordinate system. Furthermore,

or the panorama-camera axisand the hyperbolic-camera

axisry, we setr, = r, = k(0,0,1)" for k € R, that is,

the directions ofr,, andr}, are the direction of the axis.

For the configuration of the panorama camera and the hy-
perbolic camera which share axgsandr), as illustrated in
figure 5, the pointsn = (u,v) ", z = (z,y,2) " andz, =
(z,yp, 2,) are projections of a poink = (X,Y,2)" in

a space on to the hyperbolic-image planehe the hyper-
bolic surfaceS and the cylindrical-image surfacg,, re-
spectively. Here, the points andm satisfy the equation

_ 0

() (5)
2
——2 . The configuration of the
efFby/ u+uv2+f2 9
hyperbolic-camera image and the hyperbolic surfacé
!/ a i H

enables us to set’ = Py vy The pointx is
transformed to the point, according to the equation

__

Therefore, equations (2) and (3) derive the relation between
the pointz,, andm as

m

f &)

where )\ =

Cfof = 2e/N) (R

These relations permit us to transform the hyperbolic-image
planer to the cylindrical-image surfacg,. This geometri-

cal property leads to the conclusion that a hyperbolic cam-
era and a panorama camera are mathematically equivalent
camera models.

Figure 5: The geometry for the camera transformation from
a hyperbolic camera to a panorama camera.

5. Multiple-View Geometry for

Panorama Cameras

We present the camera-model transformation from a hyper-We consider the imaging region observed by the stereo

bolic camera to a panorama camera. Here, sefiingndF’

panorama cameras which are configurated parallel axially,



single axially and oblique axially. The parallel-axial and
the single-axial stereo cameras image a larger feasible re-
gion than the oblique-axial stereo ones. Here, we deal
with a camera system of four panorama cameras. The four
panorama-camera centers are on the corners of a square ver-
tical to a horizontal plane. Furthermore, all of the cam-
era axes are parallel. Therefore, the panorama-camera cen-
ters areC, = (ty,ty,t.)", Cp = (tu,ty,—t.)", C. =
(—te,—ty,t,)T @andCy = (—t,, —t,,—t,)". This con-
figuration is illustrated in figure 6 (a). Since the epipoles
exist on the panorama images and correspond to the cam- @) (b)

era axes, this camera configuration permits us to eliminate

the rotation between the camera coordinate and the WorIdFigure 6: The configuration of four panorama cameras

coordinate systems. whose centers are on the corners of a square vertical to a
For a pointX, the projections of the poinX' to cam-  horizontal plane. (a) : The six epipolar planes are yielded

erasC,, C,, C. andCy arex, = (cosf,sinf,tana)’, by the corresponding-point quadruplet. (b) : The common

@, = (cosf,sinf, tanb)’, x, = (cosw,sinw,tanc)’ points of three planes which are orthogonal are determined

and z; = (cosw,sinw,tand)’, respectively, on the by the configuration of four panorama cameras.
cylindrical-image surfaces. These four points are the
corresponding-point quadruplet. The points, =, x.
andzx, are transformed tp, = (0,a)", p, = (6,0,

p. = (w,c)T andp, = (w, d)r’, respectively, on the rectan- and tan esin 0 — tan bsin w
gular panoramic images. The corresponding-point quadru- tanb _t 9
. . . . . T an o cos w all Cc Cos
plet yields six epipolar planes. Using homogeneous coordi- mg = sin(w — 0)
nate systems, we represeXitas¢ = (X,Y, Z,1)". Here, 0
these six epipolar planes are formulatedvég = 0, where
M = (my, ma, Mg, my, M5, mg) ", Since these six planes intersect at the p&irin a space, the
rank of the matrixM is three. Therefore, the matiM ,
sin 6 T
m;1 Mg2 My3 Mg m;
T _ —cosf M, — 4 4 4 4 _ T
m, = 0 , R = mg1 Mgz Myj3 M4 = mlr )
— sin 0t + cos 6, ML T2 ks Tk Mk )
is constructed from three row vectors of the malfixIf and
sin w only if the rank of the matrixM i is three M i satisfies the
— CcOoSw equationrM g& = 0. The pointX is derived by the equation
my, = 0 y B
sinwt, — coswt,, X =M"'my ©)
where
tancsinf — tanasinw
T tan acosw — tan ccos 6 _ M1 Maz - M3 _ M4
ms = sin(w — 6) ’ M = mj1  Mj2  My3 , My = —myj4
: MmEg1  Mg2  ME3 —Mk4
sin(w — 6)t, %
Equation (6) enable us to reconstruct the pathuniquely
tan dsin f — tan bsinw from any three row vectors selected from the malix
mT = tanbcoﬁw — tandcos ¢ However, the elements of the matiik include the nu-
: sin(w — 6) ’ merical errors in their values in the practical use. We eval-
sin(w — 0)t.) uate the numerical quantity of the selected row vectors for
the reconstruction using the angles between them. Setting
tandsin 6 — tan a sinw Jop = m,mg andgas = ﬁ}gmﬁ fora,s =1,2,3, the
T tan a cos w — tan d cos 6 matricesGr = ((gap)) andG = ((gap)) satisfy the rela-
m; = sin(w — ) g tions,Gr = MpM},, G = MM . Setting); ando; for
0 1 =1,2,3,to be the eigenvalues €f r andG, respectively,



we can quantitatively evaluate the angles betwegnand

mg, andm, andmg, respectively, from the ratios of the P
eigenvalues. The ratios /)\; ando;/o; determine the ap- — - Lﬁ‘
proximate dimensions of the volume spanned by the eigen- b
vectors as follows:

1. If the eigenvalues satisfy (@) (b) (c)

AL> A= A3, 01> 03 =03, 8
) ) ) Figure 7: The approximate dimensions of the eigenvectors
the d_|men5|on_0f the volume spanned by the eigenvec- 516 determined by the ratids/\; ands; /;. For egs. (8),
tors is approximately one. Therefore, the three row (gy and (10), the three row vectors of the matridds; and
vectors of the matricebl, andM are distributed on N1 gre distributed on a line (a), on a plane (b) and in a space
aline. (c), respectively.

2. If the eigenvalues satisfy
AL =X > A3, 01 =03 > 03, 9

the dimensions of the volume spanned by the eigen-
vectors are approximately two. Therefore, the three
row vectors of the matricesI  andM are distributed

on a plane.

3. If the eigenvalues satisfy

)\12A22>\3, g1 X 03 =X 03, (10)

@ (b)

the dimensions of the volume spanned by the eigen-

vectors are approximately three. Therefore, the threeFigure 8: The configuration of four panorama cameras
row vectors of the matricelslz andM are distributed  whose centers are on the corners of a horizontal square. (a)
in a space. : The six epipolar planes are yielded by the corresponding-
point quadruplet. (b) : The common points of three planes
which are orthogonal are determined by the configuration
of four panorama cameras.

The pointX is derived by the equation (6) as a numerically
stable solution if the eigenvalues ando; satisfy the equa-
tions (10). Specifically, the conditions

Al =X = A3, 01 =03 =03, (11)

Equations (12) and (13) geometrically define the circles on

indicate that the three row vectors are mutually orthogo- . . :
. . ) lane in . Equations (14) and (1 metricall
nal. These mathematical properties lead to the conclusmna plane in a space. Equations (14) and (15) geometrically

that we can select three orthogonal planes from six epipolardeﬁne the spheres in a space. Figure 6 (b) shows the wo
planes for the reconstruction of the poikit. The configu- circles and the two spheres defined by equations (12), (13),

ration of four panorama cameras determines the point as thé14) and (15).

common points of three planes which are orthogonal. The Next, we consider a camera system whose camera cen-
on p . P 9 ' ters are configurated on the corners of a horizontal square,
collections of the points are expressed as follows:

and assuming that all of the camera axes are parallel.

1. Ifoy Lag LBy Here, four panorama-camera centers@re= (t.,t,,0)",
X24Y2=248, Z=t. 12) O = (e, 0)7, Cc = (~t, —t,,0) andCq
N 2ty (12) (tz, —t,,0)T. This configuration is illustrated in figure 8
2. lfay Laz L B (@). The corresponding-point quadruplet for a point in a
X24y? =412+ ti, 7 = —t,. (13) space yields six epipolar planes. The three planes selected

from the four epipolar planes intersect orthogonally on a

3. Ifay LSy L common point. The collections of the common points of

(X =)’ + (Y —1,)° +2°=1t2. (14 three planes which are orthogonal are expressed as follows:
4. Ifog L B L Bo 1. fay Las L By
(X +t)2+ (Y +t,)2+ 22 =12 (15) X2422=12, Y =t, (16)



2. Ifay Lap LG e

VE4Z2=t], X=—t,. (17) B
3. lfay LB L @@@@
X2+ Z2=t2, Y =-t, (18)
4, Ifag L 31 L Bs Figure 9: The configuration for eight panorama cameras.
Y2422 =12, X =t,. (19)
Equations (16), (17), (18) and (19) geometrically define the LAY . z z

circles on a plane in a space. Figure 8 (b) shows the circles . p ;
defined by these equations. ’ ,\ /f\(/f\ /i\ [/f\

For the configurations of cameras in figure 6 (a) and fig- ~——+ R - T y 2 S
ure 8 (a), the four panorama-camera centers are located on \' \' w\\}/ \{/JW
a vertical plane and a horizontal plane, respectively, in a
space. If a point in a space are on this plane, all elements o T o
of a corresponding-point quadruplet for the point are mutu- (a) (b) ()
ally coplanar on this plane. The six epipolar planes yielded
by a corresponding-point quadruplet for the point coincide
to a plane. Therefore, the point on this plane is not possi-
ble to reconstruct from the geometrical constraint of the six
epipolar planes.

Finally, we propose a camera system with eight
panorama cameras combinating the two configurations o
four panorama cameras shown in figure 6 (a) and figure
8 (a). Therefore, the eight panorama-camera centers are
on the corners of a parallel pipe. This configuration is il- References
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