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Abstract

We formulate multiple-view geometry for omni-directional
and panorama-camera systems. The mathematical formu-
lations enable us to derive the geometrical and algebraic
constraints for multiple panorama-camera configurations.
The constraints permit us to reconstruct three-dimensional
objects for a large feasible region.

1. Introduction

In this paper, we analyze the geometrical configurations of
omni-directional camera systems fulfilling the conditions
for the multiple-view geometry to reduce the number of
constraints for the multiple camera systems. This is the
first step to establish the multiple-view geometry for omni-
directional camera systems as an extension from multiple-
view geometry for pin-hole camera systems to multiple-
view geometry for omni-directional camera systems.

Multiple-view geometry for pin-hole cameras studied in
the computer vision community. The well-known alge-
braic constraints for the multiple-view geometry were in-
troduced, such as epipolar constraints equivalently bilinear
form [1], [2] for stereo views, the trifocal tensor [2], [3] for
three views, the quadrifocal tensor [4], [5] for four views
and the factorization method [6] for multiple views. On
the other hand, T. Svoboda, T. Pajdla and V. Hlavac in-
troduced the geometrical constraint for stereo systems of
omni-directional cameras [7]. Furthermore, T. Sogo, H.
Ishiguro and M. M. Trivedi introduced the multiple omni-
directional camera systems for localization and tracking [8].
They analyzed the combinatorial property of point corre-
spondences for the multiple omni-directional camera sys-
tems and they solved the point correspondences problem
for real-time human tracking which is a NP-hard problem
using their N-ocular stereo camera system. However, three
or more view geometrical constraints are not clearly repre-
sented for the omni-directional cameras. Our aim in this
study is to derive the geometrical and algebraic constraints
for multiple omni-directional cameras.

Recently, T. Sugimura and J. Sato proved [9] that the

number of algebraic constraints in the trifocal tensor is re-
duced if cameras mutually image their epipoles. This ge-
ometrical condition restricts the geometrical configuration
of pin-hole cameras, because multiple pin-hole camera sys-
tems can not always observe the epipoles of their cam-
eras. Here, we assume omni-directional cameras are lo-
cated parallel on the same plane. These omni-directional
camera systems satisfy the geometrical condition that they
always observe the epipoles of their cameras, because the
omni-directional camera always images the other cameras.
Therefore, Sato’s condition could be achieved with multiple
omni-directional camera systems.

In this study, we first define the panorama-camera model
using the geometrical concept of line camera. Next,
we show the mathematical equivalence of the panorama-
camera model and the hyperbolic-camera model. Finally,
we formulate multiple-view geometry for panorama-camera
systems and derive the geometrical and algebraic con-
straints for multiple panorama-camera configurations.

2. Panoramic Image

A sequence of pin-hole camera images enables us to syn-
thesize a wide view image comparing to the image observed
by a camera. The synthesized image from a sequence of im-
ages is generally called a panoramic image. Since a point
and a line are fundamental elements for imaging, many
camera models could be geometrically constructed from the
two essential elements for imaging. Therefore, we formu-
late a camera model with lines and points for our applica-
tions.

2.1. Line-Camera Model

Definition 1 A line camera is a collection of rays which
pass through a single point on a plane in a space. A line-
camera model consists of a line-camera center which is the
single point, an image line and a camera axis which inter-
sects the line-camera center and is parallel to the image
line.
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We assume that the line-camera centerC = (0, 0, 0)>

is located at the origin of the world coordinate system. For
the line camera axisrc, we setrc = k(0, 0, 1)> for k ∈
R, that is, the direction ofrc is the direction of thez axis.
For the image linel of the line camera on thex-z plane
(y = 0), a pointX = (X, 0, Z)> in a space is projected to
the pointx = (x, 0)> on the image linel according to the
formulationx = f X

Z , wheref is the focal length of the line
camera.

Figure 1: A line-camera model.

2.2. Line-Motion Camera Model
The motion of a line camera along the direction of they
axis yields a collection of image lines{lt}n

t=1 as illustrated
in figure 2 (a). In figure 2 (b),dt is the distance between
the lineslt andlt+1. If we setdt → 0, the collection of the
image lines{lt}n

t=1 forms a rectangular image plane. As-
suming the collection of parallel imaging lines as a single
camera model, such a camera model has the same geomet-
rical property with a normal camera with respect to they
direction.

Definition 2 A line-motion camera is a collection of rays
which pass through a single line in a space. A line-motion
camera consists of a line-motion camera center which is the
single line and a image plane.

A line-motion camera projects a pointX = (X,Y, Z)>

in a space to the pointx = (x, y)> on the rectangular im-
age plane according to the equationsx = f X

Z andy = Y ,
wheref is the focal length of the line-motion camera.

2.3. Panorama-Camera Model
The rotation of a line camera around the camera axisrc

yields a collection of image lines{li}n
i=1 and a collection

of planes{αi}n
i=1 as illustrated in figure 3 (a). The plane

αi includes the image lineli and the line-camera centerC.
In figure 3 (a),ωi is the angle between the planesαi and
αi+1. If we setωi → 0 andln+1 = l1, the collection of
the parallel image lines{li}n

i=1 forms a cylindrical-image
surface. We consider that the collection of these image lines
{li}n

i=1 and the camera centerC construct a camera model.

(a) (b)

Figure 2: The parallel translation of a line camera constructs
a line-motion camera.

Definition 3 A panorama camera is a collection of rays
which pass through a single point in a space. A panorama
camera consists of a panorama-camera center which is the
single point, a cylindrical-image surface and a camera axis
which intersects the panorama-camera center and is paral-
lel to the cylindrical-image surface.

We assume that the panorama-camera centerCp =
(0, 0, 0)> is located at the origin of the world coordi-
nate system. For the line camera axisrp, we setrp =
k(0, 0, 1)> for k ∈ R, that is, the direction ofrp is
the direction of thez axis. A point X = (X, Y, Z)>

in a space is projected to the pointxp = (xp, yp, zp)>

on the cylindrical-image surface according to the formu-
lation xp = f√

X2+Y 2 X, where f is a focal length of
the panorama camera, as illustrated in figure 3 (b). Here,
we transform the cylindrical-image surface to a rectangu-
lar panoramic image. We set a point on the rectangu-
lar panoramic image isp = (up, vp)>. The pointsp
andx satisfy the equationsup = fs tan−1 yp

xp
andvp =

fs tan−1 zp√
x2

p+y2
p

, wherefs is a scale factor for transform-

ing from the cylindrical-image to the rectangular image.

(a) (b)

Figure 3: (a) : The rotation of a line camera constructs a
panorama-camera model. We setωi is the angle between
the planes which pass through the camera centerC and the
image linesli and li+1, respectively. (b) : A panorama-
camera model.
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3. Hyperbolic-Camera Model
An omni-directional camera is constructed with a pin-hole
camera and a mirror. A hyperbolic camera enables to image
the largest region in such omni-directional cameras [10].
We deal with a hyperbolic camera which practically ob-
serves an omni-directional image. In figure 4, the focal
point of the hyperbolic surfaceS is F = (0, 0, 0)> at the
origin of the world coordinate system. The camera center of
the hyperbolic camera isC = (0, 0,−2e). The hyperbolic-
camera axisrh is the line which connectsC andF . We set
the hyperbolic surfaceS : x2+y2

a2 − (z+e)2

b2 = −1, where
e =

√
a2 + b2. A point X = (X, Y, Z)> in a space is pro-

jected to the pointx = (x, y, z)> on the hyperbolic surface
S according to the formulation,x = λX, where

λ =
±a2

b
√

X2 + Y 2 + Z2 ∓ eZ
. (1)

This relation betweenX and x is satisfied, if the line,
which connects the focal pointF and the pointX, and
the hyperbolic surfaceS have at least one real common
point. Furthermore, the sign of parameterλ depends on
the position of the pointX [7]. Hereafter, we assume
that the relation of equation (1) is always satisfied. Set-
ting m = (u, v)> to be the point on the image planeπ,
the pointx on S is projected to the pointm on π accord-
ing to the equationsu = f x

z+2e andv = f y
z+2e , where

f is the focal length of the hyperbolic camera. There-
fore, a pointX = (X, Y, Z)> in a space is transformed

to the pointm as u = fa2X

(a2∓2e2)Z±2be
√

X2+Y 2+Z2)
and

v = fa2Y

(a2∓2e2)Z±2be
√

X2+Y 2+Z2)
.

Figure 4: A hyperbolic-camera model. A pointX in a space
is transformed to the pointx on the hyperboloid andx is
transformed to the pointm on image plane. The geomet-
rical property of reflected ray constructs the camera model
with a hyperbolic mirror.

4. Camera-Model Transformation
We present the camera-model transformation from a hyper-
bolic camera to a panorama camera. Here, settingCp andF

to be the panorama-camera center and the the focal point of
the hyperbolic surfaceS, respectively, we locateCp andF
at the origin of the world coordinate system. Furthermore,
for the panorama-camera axisrp and the hyperbolic-camera
axisrh, we setrp = rh = k(0, 0, 1)> for k ∈ R, that is,
the directions ofrp andrh are the direction of thez axis.
For the configuration of the panorama camera and the hy-
perbolic camera which share axesrp andrh as illustrated in
figure 5, the pointsm = (u, v)>, x = (x, y, z)> andxp =
(xp, yp, zp) are projections of a pointX = (X,Y, Z)> in
a space on to the hyperbolic-image planeπ, the the hyper-
bolic surfaceS and the cylindrical-image surfaceSp, re-
spectively. Here, the pointsx andm satisfy the equation

x = λ′
(

m
f

)
+

(
0
−2e

)
, (2)

whereλ′ = a2

ef∓b
√

u2+v2+f2
. The configuration of the

hyperbolic-camera imageπ and the hyperbolic surfaceS
enables us to setλ′ = a2

ef−b
√

u2+v2+f2
. The pointx is

transformed to the pointxp according to the equation

xp =
fp

λ′|m|x. (3)

Therefore, equations (2) and (3) derive the relation between
the pointxp andm as

xp =
fp(f − 2e/λ′)

|m|
( m

f−2e/λ′

1

)
. (4)

These relations permit us to transform the hyperbolic-image
planeπ to the cylindrical-image surfaceSp. This geometri-
cal property leads to the conclusion that a hyperbolic cam-
era and a panorama camera are mathematically equivalent
camera models.

Figure 5: The geometry for the camera transformation from
a hyperbolic camera to a panorama camera.

5. Multiple-View Geometry for
Panorama Cameras

We consider the imaging region observed by the stereo
panorama cameras which are configurated parallel axially,

3



single axially and oblique axially. The parallel-axial and
the single-axial stereo cameras image a larger feasible re-
gion than the oblique-axial stereo ones. Here, we deal
with a camera system of four panorama cameras. The four
panorama-camera centers are on the corners of a square ver-
tical to a horizontal plane. Furthermore, all of the cam-
era axes are parallel. Therefore, the panorama-camera cen-
ters areCa = (tx, ty, tz)>, Cb = (tx, ty,−tz)>, Cc =
(−tx,−ty, tz)> andCd = (−tx,−ty,−tz)>. This con-
figuration is illustrated in figure 6 (a). Since the epipoles
exist on the panorama images and correspond to the cam-
era axes, this camera configuration permits us to eliminate
the rotation between the camera coordinate and the world
coordinate systems.

For a pointX, the projections of the pointX to cam-
erasCa, Cb, Cc andCd arexa = (cos θ, sin θ, tan a)>,
xb = (cos θ, sin θ, tan b)>, xc = (cos ω, sin ω, tan c)>

and xd = (cos ω, sin ω, tan d)>, respectively, on the
cylindrical-image surfaces. These four points are the
corresponding-point quadruplet. The pointsxa, xb, xc

and xd are transformed topa = (θ, a)>, pb = (θ, b)>,
pc = (ω, c)> andpd = (ω, d)>, respectively, on the rectan-
gular panoramic images. The corresponding-point quadru-
plet yields six epipolar planes. Using homogeneous coordi-
nate systems, we representX asξ = (X, Y, Z, 1)>. Here,
these six epipolar planes are formulated asMξ = 0, where
M = (m1, m2,m3, m4, m5, m6)>,

m>
1 =




sin θ
− cos θ

0
− sin θtx + cos θty


 ,

m>
2 =




sin ω
− cos ω

0
sin ωtx − cos ωty


 ,

m>
3 =




tan c sin θ − tan a sin ω
tan a cosω − tan c cos θ

sin(ω − θ)
− sin(ω − θ)tz


 ,

m>
4 =




tan d sin θ − tan b sinω
tan b cos ω − tan d cos θ

sin(ω − θ)
sin(ω − θ)tz)


 ,

m>
5 =




tan d sin θ − tan a sin ω
tan a cosω − tan d cos θ

sin(ω − θ)
0


 ,

(a) (b)

Figure 6: The configuration of four panorama cameras
whose centers are on the corners of a square vertical to a
horizontal plane. (a) : The six epipolar planes are yielded
by the corresponding-point quadruplet. (b) : The common
points of three planes which are orthogonal are determined
by the configuration of four panorama cameras.

and

m>
6 =




tan c sin θ − tan b sin ω
tan b cosω − tan c cos θ

sin(ω − θ)
0


 .

Since these six planes intersect at the pointX in a space, the
rank of the matrixM is three. Therefore, the matrixMR,

MR =




mi1 mi2 mi3 mi4

mj1 mj2 mj3 mj4

mk1 mk2 mk3 mk4


 =




m>
i

m>
j

m>
k


 ,

(5)
is constructed from three row vectors of the matrixM . If and
only if the rank of the matrixMR is three,MR satisfies the
equationMRξ = 0. The pointX is derived by the equation

X = M̄−1m4 (6)

where

M̄ =




mi1 mi2 mi3

mj1 mj2 mj3

mk1 mk2 mk3


 , m̄4 =




−mi4

−mj4

−mk4


 .

(7)
Equation (6) enable us to reconstruct the pointX uniquely
from any three row vectors selected from the matrixM .

However, the elements of the matrixM include the nu-
merical errors in their values in the practical use. We eval-
uate the numerical quantity of the selected row vectors for
the reconstruction using the angles between them. Setting
gαβ = m>

α mβ andḡαβ = m̄>
α m̄β for α, β = 1, 2, 3, the

matricesGR = ((gαβ)) andḠ = ((ḡαβ)) satisfy the rela-
tions,GR = MRM>

R, Ḡ = M̄M̄>. Settingλi andσi for
i = 1, 2, 3, to be the eigenvalues ofGR andḠ, respectively,
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we can quantitatively evaluate the angles betweenmα and
mβ , andm̄α andm̄β , respectively, from the ratios of the
eigenvalues. The ratiosλi/λj andσi/σj determine the ap-
proximate dimensions of the volume spanned by the eigen-
vectors as follows:

1. If the eigenvalues satisfy

λ1 À λ2 ' λ3, σ1 À σ2 ' σ3, (8)

the dimension of the volume spanned by the eigenvec-
tors is approximately one. Therefore, the three row
vectors of the matricesMR andM̄ are distributed on
a line.

2. If the eigenvalues satisfy

λ1 ' λ2 À λ3, σ1 ' σ2 À σ3, (9)

the dimensions of the volume spanned by the eigen-
vectors are approximately two. Therefore, the three
row vectors of the matricesMR andM̄ are distributed
on a plane.

3. If the eigenvalues satisfy

λ1 ' λ2 ' λ3, σ1 ' σ2 ' σ3, (10)

the dimensions of the volume spanned by the eigen-
vectors are approximately three. Therefore, the three
row vectors of the matricesMR andM̄ are distributed
in a space.

The pointX is derived by the equation (6) as a numerically
stable solution if the eigenvaluesλi andσi satisfy the equa-
tions (10). Specifically, the conditions

λ1 = λ2 = λ3, σ1 = σ2 = σ3, (11)

indicate that the three row vectors are mutually orthogo-
nal. These mathematical properties lead to the conclusion
that we can select three orthogonal planes from six epipolar
planes for the reconstruction of the pointX. The configu-
ration of four panorama cameras determines the point as the
common points of three planes which are orthogonal. The
collections of the points are expressed as follows:

1. If α1 ⊥ α2 ⊥ β1

X2 + Y 2 = t2x + t2y, Z = tz. (12)

2. If α1 ⊥ α2 ⊥ β2

X2 + Y 2 = t2x + t2y, Z = −tz. (13)

3. If α1 ⊥ β1 ⊥ β2

(X − tx)2 + (Y − ty)2 + Z2 = t2z. (14)

4. If α2 ⊥ β1 ⊥ β2

(X + tx)2 + (Y + ty)2 + Z2 = t2z. (15)

(a) (b) (c)

Figure 7: The approximate dimensions of the eigenvectors
are determined by the ratiosλi/λj andσi/σj . For eqs. (8),
(9) and (10), the three row vectors of the matricesMR and
M̄ are distributed on a line (a), on a plane (b) and in a space
(c), respectively.

(a) (b)

Figure 8: The configuration of four panorama cameras
whose centers are on the corners of a horizontal square. (a)
: The six epipolar planes are yielded by the corresponding-
point quadruplet. (b) : The common points of three planes
which are orthogonal are determined by the configuration
of four panorama cameras.

Equations (12) and (13) geometrically define the circles on
a plane in a space. Equations (14) and (15) geometrically
define the spheres in a space. Figure 6 (b) shows the two
circles and the two spheres defined by equations (12), (13),
(14) and (15).

Next, we consider a camera system whose camera cen-
ters are configurated on the corners of a horizontal square,
and assuming that all of the camera axes are parallel.
Here, four panorama-camera centers areCa = (tx, ty, 0)>,
Cb = (−tx, ty, 0)>, Cc = (−tx,−ty, 0)> and Cd =
(tx,−ty, 0)>. This configuration is illustrated in figure 8
(a). The corresponding-point quadruplet for a point in a
space yields six epipolar planes. The three planes selected
from the four epipolar planes intersect orthogonally on a
common point. The collections of the common points of
three planes which are orthogonal are expressed as follows:

1. If α1 ⊥ α2 ⊥ β1

X2 + Z2 = t2x, Y = ty. (16)
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2. If α1 ⊥ α2 ⊥ β2

Y 2 + Z2 = t2y, X = −tx. (17)

3. If α1 ⊥ β1 ⊥ β2

X2 + Z2 = t2x, Y = −ty. (18)

4. If α2 ⊥ β1 ⊥ β2

Y 2 + Z2 = t2y, X = tx. (19)

Equations (16), (17), (18) and (19) geometrically define the
circles on a plane in a space. Figure 8 (b) shows the circles
defined by these equations.

For the configurations of cameras in figure 6 (a) and fig-
ure 8 (a), the four panorama-camera centers are located on
a vertical plane and a horizontal plane, respectively, in a
space. If a point in a space are on this plane, all elements
of a corresponding-point quadruplet for the point are mutu-
ally coplanar on this plane. The six epipolar planes yielded
by a corresponding-point quadruplet for the point coincide
to a plane. Therefore, the point on this plane is not possi-
ble to reconstruct from the geometrical constraint of the six
epipolar planes.

Finally, we propose a camera system with eight
panorama cameras combinating the two configurations of
four panorama cameras shown in figure 6 (a) and figure
8 (a). Therefore, the eight panorama-camera centers are
on the corners of a parallel pipe. This configuration is il-
lustrated in figure 9. For this eight panorama-camera sys-
tem, the corresponding-point octuplet for a point in a space
yields 28 epipolar planes. Same as the four panorama-
camera system, this eight panorama-camera system enables
us to select three orthogonal planes, which orthogonally in-
tersect on a common point, from the 28 epipolar planes. The
collections of common points of three epipolar planes yield
the 16 circles and the 8 spheres as illustrated in figure 10.
Since cameras of this system are configurated in a space,
this camera system can yield more combinations of orthog-
onal planes than the four camera system dose. Therefore,
the points which are the common points of these orthogonal
planes distribute in wider areas in a space. Furthermore, be-
cause of the combination of the two planar configurations,
the configuration in a space of eight cameras has no critical
point which are not reconstructed. This geometrical prop-
erty leads to the conclusion that our eight panorama-camera
system provides a larger feasible region for the reconstruc-
tion of objects than four-camera system on a plane.

6. Summary and Conclusions
In this paper, we formulated quadrilinear forms for the mul-
tiple images observed by panorama and omni-directional
cameras. We observed that multiple-focal-tensorial expres-
sion is a natural mathematical tool for the analysis of multi-
ple panorama-camera system.

Figure 9: The configuration for eight panorama cameras.

(a) (b) (c)

Figure 10: The gray circles in figures are the spheres. The
dashed lines in these figures are the circles on a plane in a
space. These spheres and circles are yielded by the collec-
tions of common points of three orthogonal planes selected
from 28 epipolar planes.
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