
The Painless Path to Release 6.06 of the SAS' System
Robina G. Thornton, SAS Consulting Services Inc., Rockville, MD

John Boling, SAS Institute Inc., Cary, NC

ABSTRACT

This paper addresses two main issues. The required changes for
application conversion from Version 5 of the SAS" System to
Release 6.06 is addressed first. Next, selected new features avail­
able in Release 6.06 of the SAS System that are not required for
application conversion but can enhance the application in terms of
efficiency, maintainability, or required development time are dis­
cussed.

INTRODUCTION

The paper provides a general overview of the enhancements to the
base SAS software product without regard to mode of execution
(that is, batd'l, interactive). Some of the features to be discussed
include indexing SAS data files, compressing SAS data files, storing
compiled DATA step code, creating VIEWS using the SQl proce­
dure, and WHERE processing. For more detailed information on the
features discussed in this paper the reader should consult the
appropriate documentation. Throughout the paper ex:amples are
presented using data for a large manufacturing company. Most of
the examples reference either the employee master file or the order­
ing/invoicing data.

THE SAS DATA MODEL

The internal structure of SAS files has changed in Release 6.06 of
the SAS System, which allows for new concepts for the storage and
access of data by the SAS System. These new concepts expand
the functionality of the SAS System without greatly changing the
everyday use of the SAS language. As always a SAS data set con­
sists of two parts: a descriptor portion that describes the attributes
of the variables in the data set, and a data portion containing the
actual data values. In Release 6.06 a SAS data set is called a SAS
data file (memtype=DATA) if the descriptor portion and the data
values are in the same physical location. If the descriptor infon nation
and the data values are stored separately, they form a SAS data
view (memtype=VIEW). The view descriptor includes information
as to where the data are physically stored and which records and
variables to process. Some people prefer to think of this data view
as a logical SAS data set. Within the SAS System both SAS data
files and SAS data views are referred to as SAS data sets. The data
values for a SAS data view can be stored in a SAS data file, an exter­
nal data base, or an external file. Therefore, the SAS System can
directly access data from any of the following sources as if the data
were contained In a physical SAS data file without ever creating the
physical SAS data file:

• DBMSs such as DB2: ORACLE; RdbNMS; SaUDS; and
SYSTEM 2000' (using SAS/ACCESS' software)

• data created by statistical software products such as
BMDP, SPSS, and OSIRIS

• logical data sets (VIEWS) of variables stored in various data
files including SAS data sets.

17

CONVERSION REQUIREMENTS

For many applications nothing will need to be changed to run an
existing application under the new release of the software. Although
the file structure within the SAS System has changed, this change
has little impact on the compatibility of existing Version 5 SAS pro­
grams with Release 6.06. Unfortunately, there is no simple rule that
applies to every existing application. Exactly what and how much
needs to change in current production applications depends on the
application and the operating system. The following sections dis­
cuss three different scenarios.

Base SAS Applications

If the application is a batch base SAS application using only Institute
supported procedures (that is, no procedures from the Supplemen­
tal Ubrary or other user written procedures that have not been
absorbed into the base product) the application should run under
Release 6.06 with no changes. The new Multipte Engine Architec­
ture enables you to access a variety of different types of files as
if they were SAS data sets. There are several native SAS engines
that are contained in the base SAS software product. One of these
engines is the V5 engine, which allows the program running under
Release 6.06 to access Version 5 SAS data sets. When a Version
5 library or SAS data set is the source of input to a Release 6.06
step, the V5 engine is engaged to process the input data, and the
SAS System will then generate the output data set or library using
the Release 6.06 architecture. The fact that the input data files are
of a different format is transparent to you.

If conversion of SAS data sets is necessary or desirable you may
use a DATA step, the new COPY statement of the OATASETS pro­
cedure, the COPY procedure, or the new V5TOV6 procedure. The
new procedure converts SAS data libraries (all member types) to
the new Release S.OS architecture on the same operating system.
The following example demonstrates the use of PROC V5TOVS:

LIBNAHE VSOATA 'SASID.EKPLOYEE.LIB'; ,. version 5 library *'
LIBNAHE V6DATA 'SASID.EKPLOYEE.LIBV6'; '* version 6 library *'
PRoe VSTOV6 IN .. VSDATA OUT", V6DATA;

RUB;

Applications Utilizing User-Written Formats or Informats

In Release S.06 user defined formats and informats are stored in
SAS libraries and have the member type of CATALOG. If an applica­
tion accesses user created formats and is running in the minicoJ11-
puter environment, the format library must be converted to a
Release 6.0S catalog before the application can be run under
Release S.06 software. To convert formats and informats from Ver­
sion 5 to Release 6.06 in the minicomputer environment you MUST
use PROC V5TOVS as in the following example:

LIBNAHE V6DATA 'SASID.EMPLOYEE.V6LIB'; '* version 6 library *'
LIBNAHE FMTLIB 'SASID.EMPLOYEE.FMTLIB'; '* version 5 format lib *'
PRoe VSTOV6 FORMAT = FKTLIB OUT = V6DATA;
RUN;

In the mainframe environment (MVS, CMS, or VSE) the conversion
is not required, but if conversion is desired the PROC must use the
FORMAT = SASLIB option where SASLIB is the mandatory libref
of the Version 5 format library.

Applications Utilizing SAS/AF" Software or SASfFSF' Software
Catalogs

If an application uses SAS/AF software or SAS/FSP software cata­
logs, conversion of the catalog using PROC V5TOVS is required.
If you convert a catalog that contains entries of type PROGRAM,
you must compile the entries before execution. Version 5 SAS/AF
PROGRAMS will be converted by the V5TOVS procedure to Screen
Control Language (SCl) programs in your SAS! AF applications. The
conversion the SAS System will perform is straightforward. Once
you have converted the catalog using PROC V5TOV6, the applica­
tion will run without further changes, although you will most likely
want to enhance and modify the SAS System generated SCl to
take full advantage of the power of SCl in your SAS/AF applica­
tions. Triple pound sign (###) macros will not be converted to SCL.
Instead, each triple pound sign macro is converted to a separate
catalog entry of the type AFMACRO. Each entry's name is the name
of the original macro.

The following table indicates what needs to be converted:

Version 5 file

data sets
formatslinformats

SAS/GRAPH'" catalogs
SASIFSP catalogs
SASIAF catalogs
SASIIML" modules

matrices
SASIETS' models

Conversion

optional
optional (mainframe)
required (mini)
required
required
required
required
required
required

Release S.06
Memtype

data
catalog

catalog
catalog
catalog
catalog
catalog
catalog

A Version 5 data library could include SAS data sets, SAS/AF cata­
logs, SASIFSP catalogs, SASIGRAPH catalogs, SASIETS models,
and SAS/lMl matrices and modules. One execution of the V5TOV6
procedure can perform the required conversion for all these mem­
bers of the library. The only SAS created file entities that cannot
be converted and must be re-created are SAS/GRAPH font libraries.

SELECTED NEW CAPABILITIES

There is new functionality available in the software as well. These
are features you may want to take advantage of not only when writ­
ing new applications but also when upgrading Version 5 applica­
tions. These features are not required to run a Version 5 application
under Release S.06, but depending on your existing application,
incorporating these features may improve the efficiency and/or
maintainability of your existing application.

IN Operator

The IN operator is a new comparison operator that facilitates mak­
ing comparisons to a list of items. It is similar in use to the IF state­
ment. In Version 5, to process a subset of all the employees under
the vice-president of finance some users may have written the fol­
lowing:

DA'tA. FINANCE;
SET CORPDATA.HASTER;
IF DEPT = 'ACCT' OR

DIPT = 'PAYROLL' OR
DBPT = 'LEGAL' OR
DEPT = 'INVOICB' OR

18

DEPT = 'ORDER';
other processing code here

RUN;

Now in Release 6.06 the code may be written as

DATA FINANCE;
SET CORPDATA.KASTER;
IF DEPT IN ('ACCT', 'PAYROLL', 'LEGAL', • INVOICE'. 'ORDER' J;
otber processing code bere

RUN;

The IN operator expects character values in quotes and the values
separated by commas or blanks. The IF statement is still present
in Release 6.06, so code does not need to be updated. However,
you may want to take advantage of the conciseness of the new sup­
ported syntax.

WHERE PROCESSING

WHERE processing is now available as both a data set option and
a statement in both DATA and PROC steps. WHERE processing
allows you to select a subset of observations satisfying one or more
conditions in an existing SAS data set. An example of a WHERE
statement to select employees from the accounting department fol­
lows:

LIBIlAME CORPDATA 'SASID.EKPLOYEE,LIBV6'; /, version· 6 SAS library 'I
DATA ACCTNG;

SET CORPDATA.IKPLOYEI;
WHIRE DIPT = 'ACCT';
other processing statements

RUN;

An example of a WHERE data set option follows:

LIBNAKI CORPDATA 'SASID.EKPLOYEE.LIBV6': I' version 6 SAS library ,/
DATA EKPLOYEI;

SET CORPDATA.EKPLOYEE (lIHERE ._ (DEPT" 'ACCT')) i
other processing statements

RUN;

Or the WHERE processing can be in a PROC step as either a state­
ment or data set optipn

LIBNAHE CORPDATA 'SASID.EKPLOYEE.LIBV6'; /, version 6 SAS library 'I
PROe PRINT DATA=CORPDATA.EKPLOYEE (tlHERE '" (DEPT = 'ACCT'));
RUN;

PROC fRIQ DATA=CORPDATA.IKPLOYEE;
WHERE DEPT t 'ACCT';
TABLES SALARY;
FORHAT SALARY SALFMT.;

RUN;

The expression can be any valid arithmetic or logical expression.
The expression generally cOnsists of a sequence of operands Md
operators. The operands can include constants, values of variables,
and values created within the WHERE expression. The operators
can be logical, comparison, arithmetiC, IN, or special WHERE
expressions. The following five new operators are valid in a WHERE
statement:

• BETWEEN - AND to select observations based on a range
of values

1fHERE SALARY BETWIEN 20000 AND' 25000;

• CONTAINS or ? to select observations that contain the
character string specified

WHERE IKPNAKE CONTAINS 'STR';
WHERE EKPNAKE ? ' TON' ;

• IS NULL or IS MISSING to select observations for which the
variable value is missing or null

WHERE STARTDT IS KISSING;

• = * (sounds like operator) to select observations that
contain a spelling variation of the word specified

WHERE FRSTNAHE = • 'ALAN'

which would also find 'ALLAN' and 'AllEN', and so on.

LIKE to select observations With character values matching
a specified pattern. To specify patterns, there are two
special characters available:

% (percent)
represents any number of characters in that position

_ (undersoore)
represents one character in that position

WHERE EMPNAHE LIKE 'U'

to select all employee names beginning with the letter
S or

WHERE EKPNAHE LIKE 'SJ'"

to select all employee names starting with the letter S
with a third letter of E.

WHERE processing can be used to select or subset a data set. It
is not always a substitute for a subsetting IF statement. The
WHERE statement or data set option

• can only be used with existing SAS data sets

• is not executable

• selects observations before they are copied into the
program data vector

• applies selection criteria to each input data set in a MERGE
statement before combining the current observations

• can produce results that are different from a subsetting IF in
steps that interieave, merge or update data sets

• does not allow the use of functions in the expression.

A major advantage of the use of WHERE processing with a PROC
step is that several separate steps can be eliminated in many cases.
Take a situation that requires a subset of the data, followed by a
sort of the data, followed by a print step. In Version 5 that required
three separate steps and three passes of the data, as illustrated
below:

DA'rA KALES;
SET eORPDATA.EKPLOYEEi
IF SEX .. 'K';

RUN;

PRoe SORT DATA = KALES;
BY DEPT LASTNAHE;

RUN;

PRoe PRINT DATA = HALES;
BY DEPT;
SUM SALARY;

RUN;

Now code two steps with a WHERE statement in the PROC SORT
as follows:

PRoe SORT DATA = eORPDATA.EKPLOYEE OUT = KALES;
lfflERE SEX = ' K' ;
BY DEPT LASTNAHE:

RUN;

FRoe PRINT DATA = KALES:
BY DEPT;
SUM SALARYi

RUN;

19

Additionally. a WHERE command is available in SAS/FSP software
that subsets the data as well. While a WHERE command is in effect
the word where appears at the top of the FSEDIT screen as a
reminder. If a WHERE command is already active, use a WHERE
ALSO to further subset the data. These commands can be nested
to any fevel desired. To back out of the nested WHERE commands
use the WHERE UNDO command, and you are backed out one level
at a time. To eliminate all the WHERE subsetting that is in effect,
use the WHERE CLEAR command.

Stored Program Facility

The new stored program facility allows you to store compiled DATA
steps for later execution. This can save time at execution in large
production runs. The stored DATA steps can contain any valid
DATA step statements excluding global statements, such as
LlBNAME, FILENAME, TITLE, FOOTNOTE, or OPTIONS, and host­
specific data set options or host-specific FilE and INFllE statement
options. Use of the facility is a two part process: first, the DATA
step is compiled and stored and second, the compiled code is exe­
cuted redirecting the input and output as necessary. The SAS Sys­
tem does not save the source code and it cannot restore source
code from the compiled version, so it is necessary to permanently
save the source statements. To compile and store a DATA step,
submit the step using the PGM option on the RUN, CARDS, or
CARDS4 statement that ends the DATA step. Using the employee­
file, create a new data set that contains all the employees who have
reSigned so that the appropriate paper-work will be produced. This
program will run every Friday, and the DATA step needs to be
stored using the stored program facility. The first step is to code
and test the DATA step. Once the step has been tested, store the
compiled code as follows:

DATA eORPDATA.RETIREE;
SET eORPDATA.EKPLOYEE;
IF (TODAlO - 6) LE ENDDATE LI TODAYI):

RUN PGK = CORPDATA.RETPGK;

The member RETPGM is stored in the SAS data library with a mem­
type of PROGRAM and can now be called at execution time. It is
important to note that the compiled program cannot run under a dif­
ferent release of the SAS System. To execute the compiled step,
an abbreviated DATA step must be written using the PGM option
on the DATA statement, such as

DATA PGK:CORPDATA.RETPGK;
RUN;

SOL Procedure

The Structured Query language is a standardized high-level query
language that is widely used to retrieve and update data in relational
database management systems. In Release 6.06 the new proce­
dure PROC SQl uses the structured query language to perform the
following functions:

• retrieve and manipulate information stored in SAS data files.
PROC SOL views, and SAS/ACCESS views

• create and delete data sets, views, and indexes

• generate reports

• add or modify the values in a data set

• add, modify, or drop varaibles in a data set.

In the SAS System a SQl table is a SAS data set. This procedure
is extremely powerful and can accomplish the work of many tradi­
tional SAS steps in one procedure. The SELECT statement has sev­
eral dauses and can be used to select data from one or more data
sets that meet stated criteria, group or sort the data, create calcu-

lated fields, and process the data in specified groups. The first
PROC Sal example demonstrates the creation of a PROC Sal
view. The view created is a subset of the variables and records from
the employee master SAS data file. This view does not require the
physical storage space that a SAS data file requires because the
actual data values are not stored in the view. The view contains
information to the SAS System on how to locate the appropriate
data values. Also, when PROC Sal executes, the SAS System
retrieves the data values at execution time, thus always accessing
the most up-to-date version of the data. Note that PROC Sal views
have read-only access. In an environment where subsets of large
files are created on a regular basis for users to access their data,
PROC Sal can reduce both execution time and storage require­
ments.

PRoe SQL;
CREATE VIEW CORPOATA.REVIEW AS
SELECT EHPNAKE, STARTOT, SALARY, BONUS8S, BONUS89, STATUS,

TITLE, REVOATE
FROM CORPOATA.EHPLOYEE
WHERE (REVOATE BETWEEN 01APR90 AND 30APR90j AND (DEPT='MARKET' j
ORDER BY EJtPNAKE;

RUN;

The Sal code creates a permanent Sal view named REVIEW. It
contains the variables in the SELECT statement and the marketing
department records for the scheduled April performance review.
The data are sorted alphabetically by employee name. This view can
now be accessed as a permanent data set, and at execution time
the SAS System will retrieve the actual data values, obtaining the
most current data. The manager of this department can now per­
form any necessary data analysis on "hisH subset of the employee
master file.

In the seoond example for PROC Sal, a comparison is made of
several steps using Version 5 (taken from SAS Views"'; $AS Process­
Ing) and the one PROC Sal step that can now be written in Release
6.OS. Both programs illustrate the combining of data from three sep­
arate files, ORDERS, PRICES, and CUSTOMER, to produce bills
for the regular customers.

PROC SORT DATA=CORPDATA.ORDERS OUT=ORDERS;
BY PRODUCT;

RUN;
DATA OROERED;

MERGE ORDERS (IN=ORDj CORPDATA.PRICES;
IF ORO;

RUN;
PROC SORT DATA=OROERED;

BY CUSTOMER;
RUN;
DATA INVOICES (KEEP .. CUSTOMER CITY STATE COMPANY TOTAL);

MERGE ORDERED (IN=ORD) CORPDATA.CUSTOMER;
BY CUSTOMER;
IF ORO;
IF FIRST. CUSTOMER THEN TOTAL .. (I;

TOTAL + (QUANTITY * UNITCOSTj;
IF LAST. CUSTOMER;

RUN;
PROC PRINT DATA = INVOICES;
RUN;

The PROC SOL code produces a report with the same information.

PROC SQL;
SELECT DISTINCT CUSTOMER.CUSTOMER,

CITY ,STATE,COMPAKY,
SUM (QUANTITY * UIUTCOST) AS TOTAL

FROM CORPDATA. CUSTOMER, CORP DATA. PRICES, CORPDATA. ORDERS
WHERE CUSTOMER. CUSTOMER = ORDERS .CUSTOMER AND

PRICES. PRODUCT = ORDERS. PRODUCT
GROUP BY CUSTOMER
ORDER BY CUSTOMER;

RUN;

20

Indexes

Another feature available with Release 6.06 is that SAS data files
(Version 6 data files only) can be indexed by one or more variable.
There are two major benefits when using an index: fast access to
a small subset of records and data retrieval in order of the index
without using the SORT procedure. Consider the use of FSEDIT to
allow data entry in Version 5. To ascertain the presence of duplicate
records for a unique key, several steps are involved. First the user
enters the data via the FSEOIT procedure. Then the SORT proce­
dure is run based on the unique key. Next, a DATA step must be
executed to perform FIRST. and LAST. processing to eliminate the
duplicates. Depending on the application, a printout of the dupli­
cates may be desired. Now the use of indexes eliminates much of
this processing. If the file being edited with PROC FSEDIT can be
indexed using the UNIQUE option on the keys, the procedure will
not allow the user to enter reoords with a duplicate key value. As
can be seen in the following example, another benefit is that files
can be processed without the resources required by PROC SORT.
Refer to the examples used in the discussion of WHERE process­
ing. If the file were indexed by DEPT and NAME PROC SORT is
eliminated because the WHERE option retrieves the values in index
order.

'* produce listinq sorted by DEPT and LASTNAHE for MALES only *' '* sum tbe SALARY for each DEPT ./

PROC PRINT DATA = EMPLOYEE (WHERE =(SEX='M'));
BY DEPT;
SUM. SALARY;

RUN;

An index stores the values of SAS data set variables and a system
of pointers that enable the SAS System, under certain circum­
stances, to locate observations in the SAS data set more quickly
and efficiently. Once you create an index, the SAS System deter­
mines when to use it. The index is stored by the SAS System as
an inverted tree structure and is automatically maintained by the
SAS System. The index file does not appear as a separate SAS file
within the SAS environment, but will appear as a separate SAS file
within the operating system environment, except under MVS.
Indexes should only be deleted by the SAS System.

There are two index structure types, a regular or single key index
and a composite or multikey index in which the several values are
concatenated to form a single value. One data set can have several
regular and oomposite indexes. Indexes can specify that the index
value is unique, only allowing one record for each value of the index.
The index attribute can also specify that missing values are not
acceptable in the index file but are allowed as the value of the index
variable. When an index is created you specify the index name (a
valid SAS name). the attributes, and whether it is regular or compos­
ite. There are several techniques for creating an Index for SAS data
sets.

PROC DATASETS and the ACCESS window allow you to create
an index and define its attributes and type (regular or composite).
The IMl procedure allows index creation, but only for regular
indexes, and the procedure assigns default attributes. PROC Sal
also allows for both types of indexes to be created but assumes
the index to be unique. To use PROC DATASETS to create an index
use the following syntax:

PROC DATASETS LIBRARY = CORPDATA;
MODIFY EMPLOYEE;
INDEX CREATE LASTNAKE;
INDEX CREATE DEPT' NOMISS;
INDEX CREATE SSN I UNIQUE;
INDEX CREATE NMlEDEPT =(DEPT LASTNAKE);

INDEX DELETE KANAGER;
RUM;

Options available for the INDEX CREATE statement are UNIQUE
and NOMISS. The NOMISS option does not permit the index file
to contain a missing value. The UNIQUE option allows only one
record for each key. There are also several methods of determining
the index structure contained in a SAS data set. In display manager,
use of the DIR, VAR, or ACCESS windows will provide information
about the index if one exists. Detailed information on the indexing
structure is also available from PROC DATASETS using the
CONTENTS statement or PROC CONTENTS.

PROC DATASETS LIBRARY" CORPOATA;
CONTENTS DATA = EMPLOYEE;

RUN;

The following partial output is generated from the above procedure:

DATASETS PROCEDURE

-----Alphabetic List of Indexes and· Attr ihutes-----

Index
Nomiss
Option

DEPT YES
LASTNAl4E
JiAl4EDEPT

Var1 Var2

DEPT EMPNAKE

Once an index or indexes have been created, the SAS System
determines when to use them. The SAS System will always use the
index for BY processing. For WHERE processing the SAS System
will select to use the index if optimization of resources can be
attained by use of the index. In other words, if using the index is
cheaper than using another indexing strategy or a sequential pass
of the entire data set, the SAS System will choose to utilize the
index. The use of the SAS system option MSGLEVEL ~ I can be
used to obtaln a message in the log as to the use of the index. The
following tradeoffs are associated with the use of an index:

• extra CPU cycles and 1/0 operations to create and maintain
the index

• extra memory for page buffers

• extra disk space to store the index data structure

• extra resources to rebuild indexes data for a new version of
a data set with indexes

• any manipulation of the SAS data set outside the SAS
System must consider the auxiliary index file

• perhaps a less efficient access method being chosen

• if an operation expects to include missing values the index
will not be used if the index is defined with the NOMISS
option.

Indexes are preserved if a copy of the data set is made using the
COPY procedure or PROC DATASETS. The index is not preserved
if the copy is made using a DATA step. The following are suggested
guidelines for using indexes:

• Keep the number of indexes to a minimum to reduce disk
storage and update costs.

• The WHERE cost estimation is most accurate if the key
variable's values are uniformly distributed and the minimum
and maximum values are consistent with the rest of the
data.

• Do not create an index unless the data set size is at least
three page buffers (PROC CONTENTS provides this
information).

21

• Do not use the NOMISS attribute if you expect the index to
be used to optimize WHERE processing that will select
missing values.

• An index works best when it is used to retrieve a relatively
small number of records «50%).

Data File Compression

Release 6.06 introduces the capability to compress SAS data files.
In an uncompressed data file all records have the same length. The
numeric values are stored as floating point and the character values
are stored in fixed length fields, padded with blanks if the value does
not fill the field completely. In a compressed data file, each record
may have a different length. In compressed data files, the entire
record is treated as a single string of bytes with the variable types
and boundaries being ignored. Consecutive repeating characters
are collapsed into fewer bytes. There are two techniques for com­
pressing files: the COMPRESS = data set option and the
COMPRESS SAS system option. The SAS system option causes
all subsequent files to be compressed. The CONTENTS of a data
file will display the compressed attribute as either YES or NO. To
compress the employee master file we code

DATA CORPDATA.EJ(PLOYEE (COHPRESS=YESj;
SET CORPDATA.EMPLOYEE;

RUN;

The SAS System can identify whether a data file is compressed or
not and handles the data file accordingly. At execution time each
record is decompressed for processing. The certain tradeoffs inher­
ent with compressed data files are illUstrated here:

UNCOMPRESSEO

requires more mass storage

deleted record space is never
reused

observations are addressable
by number

requires less CPU time to
prepare records for 1/0

an updated record will fit
in its original location

CONCLUSION

COMPRESSEO

requires less mass storage

deleted record space can be
reused

observations are not addressable
by number (no SET with • POINT ~)

requires more CPU time to prepare
records for 1/0

and updated record may not fit in
its original location

The logical problem everyone now faces is how to implement these
new features to achieve maximum efficiency. There are no hard and
fast rules that apply to alt situations. The efficiency that may be
galned is strictly dependent on ail of the following factors:

• operating system

• data file size

• specific application

• priorities of the site.

The general rule of thumb is that for your specific applications you
will need to experiment and test various combinations of features
to determine exactly what works best to meet your specific require­
ments.

SAS Institute has several resources available to assist you with any
conversion issues you may have. There is new documentation avail­
able from the Publications Division. There will continue to be tele-

phone assistance avalable from the Technical Support Division. The
Education Division has revised several of the training courses and
added a new two-day course, Making the Transition to Release 6.06
of the SAS System. The recently formed SAS Consulting~ Services
group is also available to assist in meeting your company's specific
needs.

REFERENCES

SAS Institute Inc. (1990), Making the Transition to Release 6.06 of
the SAS System Course Notes, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1989), SAS Guide to the SQL Prooedure: Usage
and Reference, VerSion 6, First Edition, Cary, NC: SAS Institute
Inc.

SAS Institute Inc. (1989), SAS Language, Release 6.06, Preliminary
Documentation, Cary, NC: SAS Institute Inc.

22

SAS institute Inc. (1989), SAS Language and Procedures: Usage,
Version 6, First Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1987), SAS Views: SAS Processing, Cary, NC:
SAS Institute Inc.

SAS, SASIACCESS, SASlAF, SASIETS, SASIFSP, SASIGRAPH,
SASIIML, SAS Views, and SYSTEM 2000 are registered trade­
marks and SAS Consulting is a trademark of SAS Institute Inc.,
Cary, NC, USA.

DB2 is a registered trademark and SaUDS is a trademark of Inter­
national Business Machine Corporation. ORACLE is a registered
trademark. of ORACLE Corporation. RdbNMS is a trademark of
Digital Equipment Corporation.

