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We report on a search for the production of the Higgs boson decaying to two bottom quarks
accompanied by two additional quarks. The data sample used corresponds to an integrated luminosity
of approximately 4 fb~! of pp collisions at /s = 1.96 TeV recorded by the CDF II experiment. This
search includes twice the integrated luminosity of the previous published result, uses analysis techniques
to distinguish jets originating from light flavor quarks and those from gluon radiation, and adds sensitivity
to a Higgs boson produced by vector boson fusion. We find no evidence of the Higgs boson and place
limits on the Higgs boson production cross section for Higgs boson masses between 100 GeV/c? and
150 GeV/c? at the 95% confidence level. For a Higgs boson mass of 120 GeV/c?, the observed
(expected) limit is 10.5 (20.0) times the predicted standard model cross section.

DOI: 10.1103/PhysRevD.84.052010

L. INTRODUCTION

The Higgs boson remains the only undiscovered particle
of the standard model (SM) of particle physics. It is the
physical manifestation of the mechanism which provides
mass to fundamental particles [1,2]. Direct searches at the
LEP collider have excluded a Higgs boson mass my <
114.4 GeV/c?* at 95% confidence level (CL) [3], while the
Tevatron collaborations have excluded a Higgs boson mass
between 163 GeV/c? and 166 GeV/c? at 95% CL [4]. The
Tevatron collaborations have reported a preliminary update
which extends the exclusion region for a Higgs boson mass
between 158 and 173 GeV/c? [5]. Global fits to precision
electroweak measurements set a one-sided 95% CL upper
limit on my at 157 GeV/c? [6].

This article presents the results of a search for the Higgs
boson using an integrated luminosity of 4 fb~! of pp
collision data at /s = 1.96 TeV recorded by the Collider
Detector at Fermilab (CDF II). We search for a Higgs
boson decaying to a pair of bottom-quark jets (bb) accom-
panied by two additional quark jets (gq’) for Higgs mass
100 = my = 150 GeV/c?. This search is most sensitive to
a Higgs boson with low-mass, my < 135 GeV/c?, where
the Higgs boson decay to bb is dominant [7]. The two
production channels studied are associated production and
vector boson fusion (VBF). The associated production
channel is pp — VH — qq'bb, where V is a W/Z vector
boson, which decays to a pair of quarks. The hadronic
branching fraction of V to ¢q’ is = 70% [8]. In the VBF
channel, pp — gq'H — qq'bb, the incoming partons each
radiate a vector boson and the two vector bosons fuse to
form a Higgs boson.

Low-mass Higgs boson searches at CDF have concen-
trated on signatures that are a combination of jets, leptons
and missing transverse energy, which help to reduce the
backgrounds but the signal yields are small [9-11]. The
hadronic modes used in this search exploit the larger
branching fraction and thus have the largest signal yields
among all the search channels at CDF. The major challenge
for this search is the modeling and suppression of the large
background from QCD multijets (referred to as QCD for
brevity).

A previous letter on the search for the Higgs boson in the
all-hadronic channel was published using an integrated

PACS numbers: 14.80.Bn, 13.85.Rm

luminosity of 2 fb~! [12]. This article has lowered the
expected limit by a factor of 2: a factor of = /2 from
doubling the analyzed data and a factor of 1.4 from im-
provements to the analysis, which are discussed in this
article.

II. THE TEVATRON AND THE CDF II DETECTOR

The CDF II detector, designed to study pp collisions, is
both an azimuthally and forward-backward symmetric. It
is described in detail in Refs. [13—-15] and references
therein. CDF II uses a cylindrical coordinate system in
which the z axis aligned along the proton beam direction,
0 is the polar angle relative to the z-axis, and ¢ is the
azimuthal angle relative to the x-axis. The pseudorapidity
is defined as n = — In(tand/2). The transverse energy is
E; = Esind. Jets are defined by a cluster of energy in the

calorimeter deposited inside a cone of radius AR =

V(A®)? + (An)> = 0.4 as reconstructed by the JETCLU

algorithm [16]. Corrections are applied to the measured
jet energy to account for detector calibrations, multiple
interactions, underlying event and energy outside of the
jet cone [17].

The data for this search were collected by two multijet
triggers. The first 2.8 fb~! used a trigger which selected at
least four jet clusters with E; = 15 GeV for each jet and a
total E; = 175 GeV. This trigger was used in the previous
result [12]. The remaining 1.1 fb~! were recorded with a
new trigger, which selected at least three jet clusters with
E; = 20 GeV for each jet and a total E; = 130 GeV. The
new trigger improved the acceptance for a low-mass Higgs
boson by 45% at Higgs mass of 100 GeV/c? and by 20% at
Higgs mass of 150 GeV/c?. The improvement was mainly
due to lowering the total E7 criteria in the new trigger.
However the gain in the signal acceptance of the new
trigger was diminished after the event selection criteria
which are described in the next section.

III. EVENT SELECTION

Events with isolated leptons or missing transverse en-
ergy significance [18] >6 are removed to avoid any over-
lap with other low-mass Higgs analyses at CDF II. The data
are refined further by selecting events with four or five jets

052010-4
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FIG. 1 (color online). my,;, — m,, plane: This plane illustrates
the VH and VBF signal regions used to select VH and VBF
candidates. The TAG region is used to derive a model of the QCD
background. The CONTROL region measures the systematic un-
certainty of the QCD model.

where each jet has E; > 15 GeV and |n| < 2.4. The se-
lected jets are ordered by descending jet-E; and any fifth
jet plays no further role. The scalar sum of the four leading
jets’ Er is required to be >220 GeV, and exactly two of
the four leading jets are required to be identified
(“tagged™) as bottom-quark jets (b jet). The scalar sum
E7 cut reduces the contribution of the QCD background. A
b jet is identified by its displaced vertex, as defined by the
SECVTX algorithm [14], or by using the probability that the
tracks within the jet are inconsistent with originating from
the primary pp collision as defined by the JETPROB algo-
rithm [19]. The final four jets are labeled as by, b,, ¢4, q»

where b(q) are tagged (untagged) jets and Eo91 > Eb»42,

TABLE 1.

PHYSICAL REVIEW D 84, 052010 (2011)

The signal/background ratio is enhanced by dividing the
data into two nonoverlapping b-tagging categories: SS
when both jets are tagged by SECVTX, SJ when one jet is
tagged by SECVTX and the other by JETPROB. For a jet
tagged by both algorithms, SECVTX takes precedence as it
has a lower rate of misidentifying a light flavor jet as a b
jet. The previous 2 fb~! search only included the SS
category [12] and the addition of the SJ category increases
the signal acceptance by 36%. Other b-tagging combina-
tions, such as both b jets selected by JETPROB, were not
considered in this search as the relative increase in the
background is much larger than that for the signal.

The data are divided into VH and VBF candidates
defined by the invariant masses of the b;b, pair,
myy,, and the q,q, pair, m,,. VH candidates have 75 <
my, < 175 GeV/c? and 50 < m,, <120 GeV/c*. VBF
candidates have 75 <my;, <175 GeV/c* and m,, >
120 GeV/c?. The typical m,, dijet mass resolution is
~18% [11]. These VH and VBF signal regions are illus-
trated in Fig. 1. We search for Higgs bosons produced via
VH and VBF exclusively in the VH and VBF signal
regions, respectively. The division of events is based on
the different kinematics of the two processes. The VH
channel has two mass resonances: my;, from the Higgs
boson decay and m,, from the V decay. The VBF channel
shares the same m;,;, Higgs boson mass resonance but there
is no accompanying resonance for m,,. The g jets in VBF
tend to have a large 7 separation, which results in larger
values of m,,. The cut of m,, > 120 GeV/ c? optimizes
the VBF signal over background ratio. The acceptance for
VH and VBF events varies from 2% to 3% for
100 GeV/c? < my < 150 GeV/c?. As VH and VBF can-
didates are also split by the two b-tagging categories; there
are 4 independent samples (channels) which are studied:
VH-SS; VH-SJ; VBF-SS; VBF-SJ.

Expected number of non-QCD background and VH/VBF signal with observed

number of events for the four channels. Statistical and systematic uncertainties are combined in
quadrature where systematic uncertainties dominate. The number of VH(VBF) events are
exclusive to the VH(VBF) channels. The difference between data and non-QCD are assumed

to be QCD.
VH-SS VH-S] VBE-SS VBE-SJ

tt 281.7 =45.6 1153 %199 1773 +28.7 757 =13.1

Single-top 44.1 7.1 17.7 = 3.1 17.2 £2.8 10.0 = 1.7

Z + Jets 127.5 £ 65.8 554 =288 1350+ 69.7 62.9 =327

W+ HF 279144 120x6.2 4.8 25 33+ 1.7

Diboson 11.4 £ 1.6 85*+13 5.3*0.7 3.8+0.6

Total 492.6 = 81.7 208.9 =357 339.6 +x75.5 155.7 =35.3

Non-QCD

Higgs Signal (my = 120 GeV/c?)

VH 7.8+ 1.0 29*+04

VBF 3.2*+04 1.2+0.2

Data 16857 9341 17776 9518
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IV. SIGNAL AND BACKGROUND SAMPLES

The data are compared to a model of the signal and
background composed of QCD, 7, Z(— bb/cc) +
Jets(Z + jets), single-top, W + bbh/cé (W + HF), and
WW /WZ/ZZ (diboson) events. The signal and non-QCD
backgrounds are modeled by Monte Carlo (MC) simula-
tion. The VH and VBF production are generated by PYTHIA
[20], combined with a GEANT-based [21] simulation of the
CDF 1I detector [22]. The non-QCD MC is described in
detail in Ref. [12] and normalized to next-to-leading order
cross sections. All the MC samples include the trigger
simulation and their trigger efficiencies are corrected as
described in Ref. [12]. The QCD background shape is
modeled by a data-driven technique developed in
Ref. [12] and described in detail below. The expected signal
yields of the four channels are 7.8(VH-SS), 2.9(VH-SJ),
3.2(VBF-SS), and 1.2(VBF-SJ) for my = 120 GeV/c?.
The total backgrounds are about 17000(VH-SS),
9300(VH-SJ), 18000(VBF-SS), and 9500(VBF-SJ). The
background composition is ~98% QCD (Table I).

V. QCD MODELING

The shape of the dominant QCD background is modeled
using a data-driven method known as the tag rate function
(TRF) and is described in detail in Ref. [12]. The TRF is
applied to a QCD dominated data sample of events with at
least one SECVTX b-tagged jet (single-tagged events) to
predict the distribution of events with exactly two b-tagged
jets (double-tagged events). For each single-tagged event,
the TRF gives the probability of each additional jet, called
a probe jet, to be a second b-tagged jet. The TRF is
parameterized as a function of three variables: the E7
and 7 of the probe jet and AR between the tagged b jet
and probe jet. The choice of variables used to parameterize
the TRF is motivated by the kinematics of the QCD back-

350 — +
300;
250;
» -
2 200 - —e— Data
e F
“-‘150:— ‘:lt{
E %
100 - W+HFand
o others
50
0: N T

0 005 01 015 02 025 03 035 04 045 05
my

(a) t¢ mn moment

FIG. 2 (color online).
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ground and the characteristics of the b-tagging algorithms.
As the behavior of the SECVTX and JETPROB b-tagging
algorithms are not identical, there is a TRF for SS and
another TRF for SJ. The TRF is measured using jets in the
TAG region (Fig. 1), defined as m,,, <45 GeV/c?, my, <
50 GeV/c? and my;, > 200 GeV/c?, which is not in the
VH and VBF signal regions.

VI. JET MOMENT

The VH and VBF g-jets are mostly quark jets, while
QCD g-jets are a mixture of gluon and quark jets. As gluon
jets, on average, tend to be broader than quark jets, any
variable related to the jet width is an additional tool to
discriminate the Higgs signal from QCD.

In this article, we use the jet ¢(7) moment, (p) (1))
[23], of g jets which measures the jet width along the ¢(n)
axis. The jet ¢ and n moments are defined by

ower
Ej T

() = \Jg[ o

ower
E; T

(m) = \Jg[f(nw - met)Z]

where the ¢ and 7 jet-moments are summed over the
calorimeter towers forming the jet and depends on the
tower-Ep (ERYer), the jet-E; (EX), the tower’s ¢ (1) posi-
tion, d)tower (ntower)7 and the jet’s ¢(77) pOSitiOIl, ¢jet(7]jet)~
The function A@(dower Pjer) in Eq. (1a) is the smallest
angular difference between ¢,y and ¢ The jet mo-
ment is a measure of the jet’s width.

We checked whether the MC simulation of the quark jet
moment matches the data. Gluon jet-moments were not
checked as the Higgs g-jet, modeled by MC, are mostly
quark jets whereas gluon jets only appear in QCD, which is

+

(Ad)((ﬁlower’ ¢jet))2:| (la)

(1b)

250

100

% W+HF and

50 others

PRI PRI S R
0 005 01 015 02 025 03 035 04 045 05

($)’ (rad)
(b) tt ¢ moment

Comparisons of the jet-moments of ¢7 data to ¢ and W + HF, Z + jets, single-top, diboson, misidentified

b-jets (W + HF and others) MC. Only after applying all corrections does the MC agree with data.
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derived from data. The hadronic W decay from tf —
bWbW — blv + bgq', where [ is an electron or a muon,
provides a source of quark jets. The event selection from
Ref. [24] was used to extract a ¢7 data sample which is 86%
tt. The complete sample composition is described in
Ref. [24]. The leading untagged jet pair whose invariant
mass is 80 + 30 GeV/c? is assumed to be the quark jets

PHYSICAL REVIEW D 84, 052010 (2011)

from the hadronic W boson decay. The same event and

leading untagged jet pair selection is applied to tf MC to
compare with data.

The jet moment depends not only on the parton initiating
the jet but also on the EJTet, Tjer» and the number of primary

vertices in the event (Ny,,), which are not guaranteed to be
the same for data and MC. The dependencies are removed
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0.15 -
[]jacb []jacb []jacD
~ 01
° % g —VH
> 01 > L =3
38 g o1 T
© o >
= = 2
.§ § 2 005
G 0.05 S 0.05 |-
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0 0 1 1 n 1 n 0 L | L | ALl 1 1
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M,, (GeV/c?) M,, (GeV/c?) <0’
() (b) (c)
-+ Data + Data 0.15 -+ Data
0.15 - .

[]acD []acD []acD
= —VH ~ o1l —VH _ —VH
S ol s g o1
s T g
S o S
g g g
& 0.05 & 0051 L 005

0 0 ‘ ’ L 0
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D
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- - c
S S S 0.04
c 002 [ S
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0 o 1 1 1 0 " " 1 h 1 "
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FIG. 3. Distribution of variables used to train the VH NN. The signal consists of VH (my = 120 GeV/c?) SS events and the
background consists of TRF predicted QCD SS events which have passed the VH candidate selection. All plots are normalised to unit
area to compare shapes. After correction functions have been applied to m,, and the jet-moments, the TRF correctly predicts the shape

of the double-tagged SS data for all variables.
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by rescaling the measured jet moment to a common refer-
ence ofEJTct =50 GeV/c?, Njer = 0 and Ny, = 1, as mea-
sured in data. The rescaling for {¢) is performed using

f]q)sata(Ej;t = SOGeV/CZ’ Njet = 0, Ny =1)

(D)bata = (P)pata X -
e - fgata(EJ;t’ njetrNVtx)

(2a)
o Shua (B =50GeV /€, mje =0, Ny = 1)
fI?;IC (Ej;"lt’ Mjev NVtx)

<¢>1/v1c=<¢>MC

(2b)

where £, (B, e Nye) and fiac(EF', Mje, Ny are the
(¢) parameterizations for data and MC, respectively.
(D)pata{PImc) are the measured (@) for data(MC), and
(D) baa({P ) are the rescaled values. (n) are rescaled in
a similar way but has a separate (1) parameterization for
data and MC.

After the measured jet moments are rescaled, the MC
required an additional shiftin ¢ and 5 of ~ + 2% to agree
with the data. Half of this offset was used as an estimate of
the systematic uncertainty of the MC jet moment. Figure 2
compares the jet moments of data to the simulated #7 signal
and background MC, which are in the same fractions as
measured in data. Only after applying all corrections does
the MC agree with the data.

As an additional check, the (¢)y;c and (m)}y,c of 1t MC
was compared with VH and VBF MC. The average jet
moments of the MC samples were expected to be identical
to the g-jets from ¢7 as the Higgs signal are just quark jets.
The jet moments from the VH sample agreed with f7.

PHYSICAL REVIEW D 84, 052010 (2011)

However, there was a disagreement of 5% between VBF
MC and t7 MC for jets with || > 1.1. Half of this differ-
ence was used as an additional systematic uncertainty for
the VBF jet moment.

VII. NEURAL NETWORK

The large background precludes the use of simple varia-
bles, such as m,,,, to search for a Higgs boson signal. An
artificial neural network (NN), from the TMVA package [25],
is trained to search exclusively for VH(VBF) Higgs bosons
in the VH(VBF) signal region. The NN is trained using
VH(VBF) signal and TRF QCD prediction as background.
As the kinematics for VH and VBF Higgs signals are differ-
ent, a dedicated NN for each signal is trained. The NN
training variables for the VH NN are my,,, m,,, rescaled
g, ¢ moment (), rescaled g, n moment (7,), rescaled
q> ¢ moment {(¢,)’, rescaled g, n moment (n,)’, the cosine
of the helicity angle cosfy, [26], the cosine of the leading jet
scattering angle in the four jet rest frame, cosfs [27], and Y,
which is a measure of whether both the b-jet pair and g-jet
pair are from a Higgs boson and V decay, respectively. y is
defined as the minimum of yy, and y, where yy is defined
as yw = \/(MW - M,,)* + (My — My,)* and a similar
expression exists for y. For the VBF channel, the neural
net inputs are n1,,, My, (1), (n1)’, (¢2)', and (1,)".

The two b-tagging categories have similar kinematic
distributions which allows the same NN to be used for
SS and SJ events. The NN is trained with SS events as it has
the better signal/background ratio.

Before training the NN, the TRF QCD modeling was
verified by comparing the shapes of the NN training

TABLE II. Summary of systematic uncertainties. The largest change is quoted for the sources
which have a shape uncertainty.

Source Uncertainty

Higgs and non-QCD uncertainties

Integrated Luminosity *6%

Trigger efficiency +4%

PDF 2%

JES *7% and shape

b-tagging scale factor

ISR/FSR

(¢) and (n)

tf and single-top cross section
Diboson cross section

W + HF & Z + Jets cross section
QCD uncertainties

interpolation

my, correction function

(¢) correction function

(m) correction function

*7.6% for SS
*9.7% for SJ
*2% and shape for VH
*3% and shape for VBF
shape for VH and VBF (= 10%)
*10%
+6%
*50%

shape (= 3%)
shape (= 1%)
shape (= 2%)
shape (= 2%)
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FIG. 4. Distribution of variables used to train the VBF NN. The signal consists of VBF (my = 120 GeV/c?) SS events and the
background consists of TRF predicted QCD SS events and which have passed the VBF candidate selection. All plots are normalised to
unit area to compare shapes. After correction functions have been applied to m,, and the jet-moments, the TRF correctly predicts the

shape of the double-tagged SS data for all variables.

variables constructed from single-tagged events, after ap-
plying the TRF, and double-tagged events from the TAG
region. The TRF was able to reproduce the shapes of all the
NN training variables except m,, and the jet moments. The
TRF was corrected using a correction function for each
mismodeled variable. The correction function was con-
structed from the fitted ratio of the observed double-tagged
shape in the TAG region to the TRF prediction in the TAG
region. The largest correction value was 2%. Figs. 3 and 4
show distributions of the NN training variables of VH and
VBF signal, corrected TRF QCD and double-tagged data
for the SS b-tagging category. The corrected TRF QCD
follows the shape of the data for all variables. The TRF
predictions for SJ were validated in the same way.

We search for a Higgs boson of mass 100 = my =
150 GeV/c? at 5 GeV/c? intervals. As my,, is one of the
NN training variables, which varies with different Higgs
mass hypotheses, the Higgs search sensitivity can be im-
proved by training the NN at different Higgs masses. There
is a separate VH(VBF) NN trained at my; = 100 GeV/c?,
120 GeV/c?, and 140 GeV/c?. For Higgs mass hypothe-
ses between 100 GeV/c? and 110 GeV/c?, the NN trained

with my = 100 GeV/c? is used. Similarly, we use the
my = 120 GeV/c? trained NN to search for a Higgs boson
between 115 GeV/c? and 130 GeV/c? and the my =
140 GeV/c? trained NN to search for a Higgs boson
between 135 GeV/c? and 150 GeV/c2.

Figure 5 shows the NN distributions for VH and VBF for
a Higgs mass of 120 GeV/c?. The NN returns a more
negative (positive) score for background (signal) events.
As the QCD background is large, QCD subtracted NN
distributions are also shown.

VIII. SYSTEMATIC UNCERTAINTIES

We estimate the effect of systematic uncertainties by
propagating uncertainties on the NN input variables to the
NN output. We consider both variations on the normaliza-
tion and shape of the NN output. The systematic uncer-
tainties which affect the normalization of the Higgs signal
and non-QCD backgrounds are: jet energy scale (JES) [17],
parton distribution function (PDF), b-tagging scale
factor between MC and data, initial and final state radiation
(ISR/FSR), trigger efficiency, integrated luminosity and
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NN distribution for VH-SS (a) and VBF-SS (b) for my = 120 GeV/c?. As the QCD background is large,

data-QCD versions for VH-SS and VBF-SS are shown in (c) and (d), respectively. The VH and VBF distributions are scaled by a factor

of 100.

cross sections [5]. The Higgs signal cross section uncer-
tainty is = 5% [5] but is not included as its effect is
negligible.

The uncertainties which affect the Higgs signal NN
output shape are the JES, ISR/FSR, and jet moments.
Section VI defined the jet-moment uncertainty as half of
the offset required to correct the MC. The Higgs signal jet
moment NN shape uncertainty is defined as the difference
of the Higgs signal NN shape using the nominal jet mo-
ment correction and the Higgs signal NN shape using half
of the jet moment correction.

For the TRF QCD prediction, we consider two shape
uncertainties: an interpolation uncertainty and correction
function uncertainty for m,,, (¢), and (n) variables. The
interpolation uncertainty accounts for possible difference
in the TRF between the regions where it was measured
(TAG) and applied (SIGNAL) (Fig. 1). An alternative TRF

was measured using events in the CONTROL region, as
indicated in Fig. 1, which is still background-dominated.
The interpolation uncertainty is defined as the difference of
the QCD NN shapes using the nominal TAG TRF and
CONTROL TRF. The correction function uncertainty for
my, is evaluated by deriving an alternative correction
function for m,, using events from the CONTROL region.
This alternative m,, correction function is applied to the
TREF, instead of the nominal m,, correction function, and
propagated through the NN. The difference in the QCD NN
shape between using the nominal correction function and
the CONTROL region derived function defines the correction
function shape uncertainty. The systematic uncertainty for
(¢), and (1) correction functions is evaluated in the same
way. The QCD NN output varied at most by ~2-3% for
each QCD shape systematic. The uncertainties are summa-
rized in Table II.
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FIG. 6 (color online). Expected (dashed) and observed (solid)
95% CL normalized to the SM cross section for the combined
VH and VBF channel. The dark (light) band represents the
1o(20) expected limit range.

IX. RESULTS

The NN output distribution of data are compared to the
background and we find no excess of events over
the expected background. We calculate upper limits on
the excluded Higgs boson cross section at the 95% CL
for Higgs boson mass hypotheses 100 = my =
150 GeV/c? at 5 GeV/c? intervals. The limits are calcu-
lated using a Bayesian likelihood method with a flat prior
for the signal cross section. We integrate over Gaussian
priors for the systematic uncertainties and incorporate
correlated rate and shape uncertainties as well as uncorre-
lated bin-by-bin statistical uncertainties [4]. The QCD
normalization is a free parameter that is fit to the data.

TABLE III. Expected and observed 95% CL upper limits for
the combined VH and VBF channels. The limits are normalized
to the expected Higgs cross section.

Higgs mass

(GeV/c?) —20 —1lo Median +1o +20 Observed
100 9.1 12.8 18.8 272 385 10.1
105 8.7 12.1 17.4 252 358 9.9
110 80 11.7 17.1 245 342 10.2
115 8.8 12.2 17.8 259 369 9.1
120 9.3 13.7 20.0 285 39.5 10.5
125 13.5 18.7 27.3 39.8 57.0 13.8
130 170 244 36.1 528 754 17.2
135 19.6  28.6 41.9 59.7 827 22.7
140 267  40.7 60.4 86.6 120.2 35.2
145 434 635 95.7 142.1 2053 55.8
150 73.8 1099 164.1 2403 3419 101.0
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The median of the 95% CL obtained from 10000 simu-
lated experiments is taken at the expected 95% CL. The
* 1o (where o denotes the standard deviation) and *20
expected limits are derived from the 16th, 84th, 2nd and
98th percentiles of the distribution, respectively.

For my = 120 GeV/ ¢?, the observed (expected) limit,
normalized to the SM cross section, for the individual
analysis channels are 11.9(25.6) for VH-SS, 43.4(51.8)
for VH-SJ, 47.0(49.4) for VBF-SS, 93.7(132.3) for
VBF-SJ, and 10.5(20.0) for the combination of these four
channels. The combined channel limits for Higgs boson
masses in the range between 100-150 GeV/c? are shown
in Fig. 6 and summarized in Table III.

The observed limits for the individual search channels
agree within 1o of their expected limit, except for the
VH-SS channel where we see a 20 discrepancy. The
observed data in the VH-SS channel have a deficit in
the high signal region of the NN. Since the VH-SS channel
is the most sensitive, it has the strongest influence on the
combined limit; thus, the deviation of the observed limit
from the expected limit in the VH-SS channel is similar to
that of the combined limit. Figure 7 shows the ratio of the
data to the expected background for the four analysis
channels for the NN trained on a 120 GeV/c?> Higgs
boson. All four channels show a ratio = 1 over the whole
NN output range but the VH-SS channel has several points
with a ratio of = 0.9 at the NN output of ~0.5; the most
sensitive region of the NN output where the Higgs signal
peaks. If the background was mismodeled, either the TRF
has incorrectly predicted the QCD background or the NN
was at fault. The VH-SS and VBF-SS channels share the
same TRF and the VBF-SS observed limit agrees with its
expected limit. The VH-SS and VH-SJ channel share the
same trained NN and the observed and expected limits in
the VH-SJ channel agree. Since neither the NN nor TRF
showed any evidence of corrupting the background pre-
diction, it suggested the low ratio for VH-SS was likely to
be a statistical fluctuation rather than evidence of back-
ground mismodeling.
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X. SUMMARY

In summary, a search for the Higgs boson was performed
in the all-hadronic final state and set observed (expected)
limits of 10.5 (20.0) times the predicted standard model
cross section at 95% CL for 120 GeV/c? Higgs boson. The
measurements presented in this article has shown a factor
of 2 improvement over the previous 2 fb~! result for the
all-hadronic Higgs boson search [12]. This article extended
the 2 fb~! analysis by including the VBF channel, adding
an additional algorithm to identify bottom-quark jets, add-
ing an artificial neural network to separate signal from
background which includes (¢) and (n) to distinguish
gluon jets from quark jets, and by doubling the analyzed
data set. CDF II continues to collect more data and further
improvements to the analysis technique will extend the
sensitivity of the all-hadronic Higgs boson search.
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