Brought to you by:

Table of contents

Volume 290

2018

Previous issue Next issue

International Conference on Advances in Manufacturing and Materials Engineering (ICAMME 2017) 8–9 August 2017, Kuala Lumpur, Malaysia

Accepted papers received: 20 December 2017
Published online: 30 January 2018

Preface

011001
The following article is Open access

Preface from the Chairman of the 3rd ICAMME'17

Assoc. Prof. Dr. Mohd Hanafi Ani

Chairman

International Conference on Advances in Manufacturing and Materials Engineering (ICAMME) 2017

Assalamu'alaikum Warahmatullahi Wabarakatuh

It is a great pleasure to welcome you to the "International Conference on Advances in Manufacturing and Materials Engineering 2017 (ICAMME 2017)" that will take place at our International Islamic University Malaysia (IIUM), Gombak campus. The campus covers 700 acres, with elegant Islamic-style buildings surrounded by green-forested limestone hills. It may possibly be the longest crystal quartz outcrop in the world, a geological wonder right next to the city, Kuala Lumpur. The conference is part of our IIUM Engineering Congress, which aims to provide an international platform for academicians, scientists, and researchers to present results of ongoing research in their respective areas.

The call for papers attracted submissions from various backgrounds. There are four keynote lectures, ninety oral presentations and over thirty posters covering the different research areas of the conference. ICAMME 2017 focuses on advances in manufacturing and materials engineering covering wide spectrum of topics. Topics range from green manufacturing, lean manufacturing, subtractive manufacturing, synthesis and application of 2D materials, functional and smart materials, and nanoelectronic among others.

011002
The following article is Open access

List of Chairman, Co-Chairman, Secretariat, Technical Committee, Publication Committee, Registration and Program Committee, Invitation, Reception and Ushering Committee, Sponsorhip Committee, Website, Publicity and Promotion Committee, Exhibition Committee, Food and Souvenir Committee, Transportation, Venue and Logistic Committee members are available in this pdf.

011003
The following article is Open access

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Papers

Nanomaterials

012001
The following article is Open access

, , and

The morphology and surface area of the poly(aniline-co-pyrrole) copolymer (PANPY) are important properties which improve the efficiency of the copolymer in various applications. In this investigation, different techniques were employed to produce PANPY in different morphologies. Aniline and pyrrole were used as monomers, and ammonium peroxydisulfate (APS) was used as an oxidizer with uniform molar ratio. Rapid mixing, drop-wise mixing, and supercritical carbon dioxide (ScCO2) polymerization techniques were appointed. The chemical structure, crystallinity, porosity, and morphology of the composite were distinguished by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) analysis, and transmission electron microscopy (TEM) respectively. The characterization tests indicated that the polyaniline/polypyrrole copolymer was successfully prepared with different morphologies. Based on the obtained TEM, hollow nanospheres were formed using rapid mixing technique with acetic acid that have a diameter of 75 nm and thickness 26 nm approximately. Also, according to the XRD, the produced structures have a semi- crystalline structure. The synthesized copolymer with ScCO2-assisted polymerization technique showed improved surface area (38.1 m2/g) with HCl as dopant.

012002
The following article is Open access

, , , , , , and

The perennial rhizomatous grass; Imperata cylindrica (I. cylindrica) has been reported rich in various phytochemicals. In present study, silver nanoparticles were synthesized from aqueous leaf extract of I. cylindrica at two different leaf conditions; fresh leaves and hot-air oven dried leaves. Biosynthesized silver nanoparticles were characterized by UV-visible spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Maximum absorption was recorded between 400 nm to 500 nm. FESEM analysis revealed that the silver nanoparticles predominantly form spherical shapes. The particles sizes were ranging from 22-37 nm. The elemental composition of the synthesized silver nanoparticles was confirmed by using energy dispersive X-ray spectroscopy (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) confirmed the reducing and stabilizing actions came from biomolecules associated with I. cylindrica leaf extract. Thus in this investigation, an environmentally safe method to synthesized silver nanoparticles using local plant extract was successfully established.

012003
The following article is Open access

, , and

Electrospinning method has been studied widely in producing nanofibers due to its straightforward and versatile method. In this study, Pineapple Leaf Fibers (PALF) solution were electrospinning to obtain mat of PALF electrospun. PALF were diluted in Trifluoacetic Acid (TFA) into five different concentrations to study the effect of concentration to the nanofibers formation. Raw sample of PALF (PALFraw), PALF after dewax (PALFdewax) and PALF after dilute with TFA (PALFTFA) were analyzed and compared using FTIR to study the structural change occur. TFA solvent has removed and recreated some of the functional group in PALF thus disrupt strong hydrogen bonds that hold hemicellulose, cellulose and lignin together. All the PALF sample has been proceed to electrospinning process. Low concentration of solution cause the solution jet to break up even before reach the collector however high concentration of solution made the solvent volatile faster and the solution dried easily. Therefore, PALF with optimum concentration of 0.02 gml-1 had favors the formation of nanofibers and succeed in forming membrane at the collector.

012004
The following article is Open access

, , and

Dye sensitized solar cells (DSSCs) rely on the absorption of photons by the dye molecules which are transported to the conduction band of the TiO2 electrode. The microstructure, energy gap and the absorption spectra of the TiO2 electrodes highly affects the efficiency of the cell. In this paper, the absorption spectra and energy gap has been studied by varying the thickness of the TiO2 paste. Nanocrystalline TiO2 thin films were deposited on ITO glass substrate with three different thickness (4.54μm, 7.12μm and 12.3μm) by using doctor blade method. After deposition all the samples were sintered at 450°C after deposition to enhance the particle bonding and for achieving better adhesion. The samples were characterized by UV-VIS spectra for determining the absorption spectra and Scanning Electron Microscopy (SEM) for investigating the thickness and the surface morphology. Fabricating the electrodes with different thickness showed significant changes in the energy gap and from the results it can be concluded that the energy gap increases with the increased thickness. The highest energy gap of 2.25ev and absorption 3.791 was achieved by 12.3μm thick sample. The absorption spectra also shows better absorption throughout the whole visible light range but the SEM images suggests that 12.3μm thick sample shows cracks all over the deposited region which will cause current leakage when the cell is assembled. Therefore, the optimum result was achieved by 7.12μm thick sample providing 1.9 ev energy gap and 3.91 absorption peak.

012005
The following article is Open access

, , and

Mechanical properties of epoxy nanocomposites filled single filler have been extensively studied by various researchers. However, there are not much discovery on the behavior of hybrid nanocomposite. In this study, single and hybrid nanocomposites of toughened epoxy filled CNT/SiC nanoparticles were investigated. The hybrid nanocomposites samples were prepared by combining CNT and SiC nanoparticles in toughened epoxy matrix via mechanical stirring method assisted with ultrasonic cavitations. Epoxy resin and liquid epoxidized natural rubber (LENR) mixture were first blend prior to the addition of nanofillers. Then, the curing process of the nanocomposite samples were conducted by compression molding technique at 130°C for 2 hours. The purpose of this study is to investigate the hybridization effect of CNT and SiC nanoparticles on mechanical properties toughened epoxy matrix. The total loading of single and hybrid nanofillers were fixed to 4% volume are 0, 4C, 4S, 3S1C, 2S2C, and 1S3C. Mechanical properties of hybrid composites show that the highest value of tensile strength achieved by 3S1C sample at about 7% increment and falls between their single composite values. Meanwhile, the stiffness of the same sample is significantly increased at about 31% of the matrix. On the other hand, a highest flexural property is obtained by 1S3C sample at about 20% increment dominated by CNT content. However, the impact strength shows reduction trend with the addition of SiC and CNT into the matrix. The hybridization of SiC and CNT show highest value in sample 1S3C at about 3.37 kJ/m2 of impact energy absorbed. FESEM micrograph have confirmed that better distributions and interaction observed between SiC nanoparticles and matrix compared to CNT, which contributed to higher tensile strength and modulus.

012006
The following article is Open access

, , and

The aim of this experiment is to screen and to understand the process variables on the fabrication of fish gelatin nanoparticles by using quality-design approach. The most influencing process variables were screened by using Plackett-Burman design. Mean particles size, size distribution, and zeta potential were found in the range 240±9.76 nm, 0.3, and −9 mV, respectively. Statistical results explained that concentration of acetone, pH of solution during precipitation step and volume of cross linker had a most significant effect on particles size of fish gelatin nanoparticles. It was found that, time and chemical consuming is lower than previous research. This study revealed the potential of quality-by design in understanding the effects of process variables on the fish gelatin nanoparticles production.

Metallic Materials

012007
The following article is Open access

, , and

This paper presents the outcomes of an experimental investigation on the effects of forming temperature and sintering schedule to the final characteristics of FeCuAl powder mass formed at different temperature and sintered at different schedule. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at room temperature as well as elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other elemental powders, namely copper (Cu), and aluminum (Al) for 60 minutes and compacted at three different temperature, i.e., 30°C, 150°C, and 200°C by applying 425 MPa of simultaneous downward and upward axial loading to generate green compacts. The as-pressed samples were inspected visually and the defect-free green compacts were subsequently sintered in an argon gas fired furnace at 800°C for 60 min at three different heating/cooling rates, i.e., 5, 10, and 15°C/min, respectively. The sintered samples were then characterised for their physical, electrical, and mechanical properties. The microstructures of the sintered samples were also analysed. The results revealed that a forming temperature of 150°C and a sintering rate of 10°C/min could produce a product with better characteristics.

012008
The following article is Open access

, , , , and

This study aims to investigate the effect of tin (Sn) and magnesium (Mg) on the sintering response of sintered Al. Although this topic has been extensively reported, details on the combined effect of Sn and Mg that function as sintering additives are still limited. The current study discusses the effect of the combined use of Sn and Mg to assist aluminium (Al) in liquid phase sintering via the powder metallurgy technique. The results demonstrated that the densities of sintered Al increased from 2.5397 to 2.575 g/cm3 as the Sn content increased from 1.5 to 2.5 wt. % respectively. Accordingly, the physical characteristics of sintered Al were transformed from black to silver, which confirmed the reduction in the oxygen content (oxide layer reduction) from 0.58 to 0.44 wt. % respectively. Additionally, the microstructure of the resultant sintered Al demonstrated that effective wetting by Sn addition was obtained at its maximum content of 2.5 wt. % with a greater micro pores reduction and better metallurgical bonding between Al particles. Therefore, the introduction of different Sn content, along with Mg element, was found to further improve the sintering response of the resultant sintered Al that consequently improved its densities and physical characteristics.

012009
The following article is Open access

, , and

This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

012010
The following article is Open access

, , and

Zinc antimonite, Zn4Sb3 is a promising thermoelectric material because of its high thermoelectric performance and abundance of Zn and Sb in nature. Thus, in this study, samples of Zn-Sb alloy were prepared using electrodeposition method because of its simple experimental set-up, which also carried out in the room temperature. From the XRD results, all samples deposited exhibit Zn-Sb alloy compositions. The best results were S1 and S3 as they had dominant peaks that showed the crystal lattice of Zn4Sb3. From the SEM images, the surface morphology of Zn-Sb alloy deposited samples showed were all-irregular, course and rough structures. While, the atoms arrangement of the deposited samples were all flowery-like. Based on physical properties characterization, the best samples; S1 (0.1M ZnCl2-0.1M SbCl3, 100mA, 120min) and S3 (0.1M ZnCl2-0.1M SbCl3, 50mA, 120min), were selected and investigated their thermoelectric performances; electrical conductivity and Seebeck coefficient, to determine their power factor, PF. Heat capacity of the samples was also examined to relate it with thermal conductivity of Zn-Sb deposited samples. For thermoelectric performance, S1 obtained power factor of 1.37x10-7V/K. Ω.cm at 102°C with the Seebeck coefficient of 181μV/K. While as for S3, the power factor was 1.58x10-7V/K. Ω.cm with Seebeck coefficient of 113μV/K at 101°C. From DSC analysis, it showed that S3 obtained higher Cp than S1. Cp for S3 was 46.8093mJ/°C while S1 was 38.3722mJ/°C.

012011
The following article is Open access

, , , and

This paper focus on reduction of low grade iron at high temperature using palm oil empty fruit bunch as a reductant. The samples were crushed and compacted into composite pellet with EFB before drying at 110°C for 24 hours. The reduction test was then conducted by heating the composite pellet in an electric tube furnace. The parameter used was at temperature range 1000°C to 1200°C and under argon gas atmosphere. The efficiency of the empty fruit bunch in the reduction process was investigated based on the extent of reduction of the iron oxide. The results showed that the extent of reduction obtained was 38.97% at 1200°C. This study demostrates that within the temperature range studied, reducibility of low grade iron ore with an empty fruit bunch tends to increase as the temperature increase.

012012
The following article is Open access

, , and

In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.

012013
The following article is Open access

, , and

The presence of water vapour at high temperature oxidation has certain effects on ferritic alloy in comparison to dry environment. It is hypothesized that at high temperature; water vapour provides hydrogen, which will dissolve into ferritic alloy substrate and altering their electronic state at the metal-oxide interface. This work aimed to clarify the change in electronic state of metal-oxide heterojunction with the presence of hydrogen/water vapour. In this study, the Schottky Barrier (SB) was created by sputtering Cr2O3 onto prepared samples by using RF Magnetron sputtering machine. The existence of Fe/Cr2O3 junction was characterized by using XRD. The surfaces were observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). The samples were then exposed in dry and humid condition at temperature of 473 K and 1073 K. In dry condition, 100% Ar is flown inside the furnace, while in wet condition mixture of 95% Ar and 5% H was used. I-V measurement of the junction was done to determine the Schottky Barrier Height(SBH) of the samples in the corresponding ambient. The results show that in Fe/Cr2O3 junction, with presence of hydrogen at temperature 473 K; the SBH was reduced by the scale factor of 1.054 and at 1073 K in wet ambient by factor of 1.068. Meanwhile, in Fe-Cr/Cr2O3 junction with presence of hydrogen, the value of SBH was increased by scale factor of 1.068 at temperature 473 K while at 1073 K, the SBH also increased by factor of 1.009.

Surface Engineering

012014
The following article is Open access

, , , , and

Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.

012015
The following article is Open access

, , , and

Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

012016
The following article is Open access

, , , , , and

Polycaprolactone (PCL) has many advantages for use in biomedical engineering field. In the present work PCL microcarriers of 150-200 μm were fabricated using oil-in-water (o/w) emulsification coupled with solvent evaporation method. The surface charge of PCL microcarrier was then been improved by using ultraviolet/ozone treatment to introduce oxygen functional group. Immobilisation of gelatin onto PCL microspheres using zero-length crosslinker provides a stable protein-support complex, with no diffusional barrier which is ideal for mass processing. The optimum concentration of carboxyl group (COOH) absorbed on the surface was 1495.9 nmol/g and the amount of gelatin immobilized was 1797.3 μg/g on UV/O3 treated microcarriers as compared to the untreated (320 μg/g) microcarriers. The absorption of functional oxygen groups on the surface and the immobilized gelatin was confirmed with Fourier Transformed Infrared spectroscopy and the enhancement of hydrophilicity of the surface was confirmed using water contact angle measurement which decreased (86.93° – 49.34°) after UV/O3 treatment and subsequently after immobilisation of gelatin. The attachment and growth kinetics for human skin fibroblast cell (HSFC) showed that adhesion occurred much more rapidly for gelatin immobilised surface as compared to untreated PCL and UV/O3 PCL microcarrier.

012017
The following article is Open access

, , and

Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

012018
The following article is Open access

and

TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

012019
The following article is Open access

, and

In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

012020
The following article is Open access

, , and

Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

Modeling & Simulation, Manufacturing Systems

012021
The following article is Open access

, , and

Facility planning is concerned with the design, layout, and accommodation of people, machines and activities of a system. Most of the researchers try to investigate the production area layout and the related facilities. However, few of them try to investigate the relationship between the production space and its relationship with service departments. The aim of this research to is to integrate different approaches in order to evaluate, analyse and select the best facilities planning method that able to explain the relationship between the production area and other supporting departments and its effect on human efforts. To achieve the objective of this research two different approaches have been integrated: Apple's layout procedure as one of the effective tools in planning factories, ELECTRE method as one of the Multi Criteria Decision Making methods (MCDM) to minimize the risk of getting poor facilities planning. Dalia industries have been selected as a case study to implement our integration the factory have been divided two main different area: the whole facility (layout A), and the manufacturing area (layout B). This article will be concerned with the manufacturing area layout (Layout B). After analysing the data gathered, the manufacturing area was divided into 10 activities. There are five factors that the alternative were compared upon which are: Inter department satisfactory level, total distance travelled for workers, total distance travelled for the product, total time travelled for the workers, and total time travelled for the product. Three different layout alternatives have been developed in addition to the original layouts. Apple's layout procedure was used to study and evaluate the different alternatives layouts, the study and evaluation of the layouts was done by calculating scores for each of the factors. After obtaining the scores from evaluating the layouts, ELECTRE method was used to compare the proposed alternatives with each other and with the existing layout; ELECTRE compares the alternatives based on their concordance and discordance indices. The alternatives were ranked from best to worst where regarding to the layouts concerned with the manufacturing area B.4 is the best alternative.

012022
The following article is Open access

, , and

Over the years, the technology of electronic industry has growth tremendously. Open ended research on how to make a better concept of electronic circuit is ongoing especially on the stretchable electronic devices. There are many designs to achieve stretchability in electronic circuits. The problem occurs when deformation applied to the stretchable electronic circuit, it cannot maintain its functionality. Fracture may happen on the conductor. In this research, the study on deformation of stretchable electronic interconnects substrate using Polydimethlysiloxanes is carried out. The purpose of this research are to study the axial deformation occur, to determine the optimum shape of the conductor designs (horseshoe, rectangular and u-shape design) for the stretchable electronic interconnect and to compare the mechanical properties of Polydimethlysiloxanes (PDMS) with Polyurethane (PU) using Finite Element Analysis (FEA). The simulation was done on the FE model of the stretchable circuit with dimension of 2.4 X 2.4 X 0.5 mm. The stretching of the FE model was simulated with the range of elongation at 10, 20 and 30 percent from its original length in order to find the strain value for all three of the conductor designs. The best conductor design is used to simulate with different types of substrate (PDMS and PU). From the simulation result, Horseshoe design record the lowest strain value for each elongation, followed by rectangular and U-shape design. Thus, Horseshoe is considered as the optimum design for the conductor compared to the other two designs. From the result also, it shows that PDMS substrate will offer more maximum allowable stretchability compared to PU substrates. Thus PDMS is considered as a better substrate compare to PU. PDMS is a good material to replace PU since it can perform under tension much better mechanically.

012023
The following article is Open access

The main aim of this research is to develop a new prototype and to conduct cost analysis of the existing roller clamp which is one of parts attached to Intravenous (I.V) Tubing used in Intravenous therapy medical device. Before proceed with the process to manufacture the final product using Fused Deposition Modeling (FDM) Technology, the data collected from survey were analyzed using Product Design Specifications approach. Selected concept has been proven to have better quality, functions and criteria compared to the existing roller clamp and the cost analysis of fabricating the roller clamp prototype was calculated.

012024
The following article is Open access

, and

TPM is one method to improve manufacturing performance through an emphasis on maintenance that involves everyone in the organization. Research on the application of TPM and its relevance to the manufacturing performance has been performed quite a lot. However, to the best of our knowledge, a study that deliberates how the application of 8 pillars TPM (especially in developing countries) is still hard to find. This paper attempts to evaluate in more detail about how the 8 pillars of TPM are applied in Indonesia and their impact on manufacturing performance. This research is a pilot study with a target of 50 companies. From the results of data collection, only 22 companies (44%) are eligible to process. Data processing was performed using SPSS and Smart PLS tools. From the validity and reliability tests, it can be seen that all items/indicators for TPM pillars are valid and reliable with correlation value (R) of 0.614 - 0.914 and with Cronbach's alpha equal to 0.753. As for the Manufacturing Performance construct, the Delivery indicator was not valid. In overall, the model is reliable with Cronbach's alpha of 0.710. From the results of Confirmatory Factors Analysis (CFA) for TPM, it can be seen that four indicators (pillars) are highly significant while four other indicators are less significant. For MP, three indicators are significant, and two are not significant. In general, the structural model of the relationship between TPM and MP is relatively strong and positive with values R = 0.791, and R squared = 0.626. This means that the TPM Pillars can explain 62.6% MP variability construct variable, while the other 37.4% can be explained by unrelated variables.

012025
The following article is Open access

, , , and

The increasing in complexity of the manufacturing systems has increased the cost of investment in many industries. Furthermore, the theoretical feasibility studies are not enough to take the decision in investing for that particular area. Therefore, the development of the new advanced software is protecting the manufacturer from investing money in production lines that may not be sufficient and effective with their requirement in terms of machine utilization and productivity issue. By conducting a simulation, using accurate model will reduce and eliminate the risk associated with their new investment. The aim of this research is to prove and highlight the importance of simulation in decision-making process. Delmia quest software was used as a simulation program to run a simulation for the production line. A simulation was first done for the existing production line and show that the estimated production rate is 261 units/day. The results have been analysed based on utilization percentage and idle time. Two different scenarios have been proposed based on different objectives. The first scenario is by focusing on low utilization machines and their idle time, this was resulted in minimizing the number of machines used by three with the addition of the works who maintain them without having an effect on the production rate. The second scenario is to increase the production rate by upgrading the curing machine which lead to the increase in the daily productivity by 7% from 261 units to 281 units.

012026
The following article is Open access

, and

This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

012027
The following article is Open access

and

Many academic articles were published in Malaysia promoting the goodness of lean in manufacturing and industrial sectors but less attention was apparently given to the possibility of obtaining the same universal benefits when applying lean in non-manufacturing sectors especially higher education. This study aims to determine the level of lean awareness among a local university's community taking its Faculty of Engineering (FoE) as the case study. It also seeks to identify typical FoE's staff perception on lean regarding its benefits and the obstacles in implementing it. A web-based survey using questionnaires was carried out for 215 respondents consisting of academic and administrative staff of the faculty. Statistical Package for the Social Science (SPSS) was used to analyze the survey data collected. A total of 13.95% of respondents returned the forms. Slightly more than half of those responded (56.7%) have encountered some of the lean terms with mean 1.43 and standard deviation 0.504. However, the large amount of standard deviation somewhat indicates that the real level of lean awareness of FoE as a group was low. In terms of lean benefits, reduction of waste was favored (93.3%) by the respondents with mean 0.93 and standard deviation 0.254. For obstacles in implementing lean, lack of knowledge was selected by most respondents (86.7%) to be the major factor with mean 0.87 and standard deviation 0.346. Through the analysis done, the study may conclude that level of lean awareness among the university's community was low thus may hinder implementation of lean concept.

012028
The following article is Open access

, , and

The industrial sector in Malaysia is one of the main sectors that have high percentage of energy demand compared to other sector and this problem may lead to the future power shortage and increasing the production cost of a company. Suitable initiatives should be implemented by the industrial sectors to solve the issues such as by improving the machining system. In the past, the majority of the energy consumption in industry focus on lighting, HVAC and office section usage. Future trend, manufacturing process is also considered to be included in the energy analysis. A study on Lean Energy Analysis in a machining process is presented. Improving the energy efficiency in a lathe machine by enhancing the cutting parameters of turning process is discussed. Energy consumption of a lathe machine was analyzed in order to identify the effect of cutting parameters towards energy consumption. It was found that the combination of parameters for third run (spindle speed: 1065 rpm, depth of cut: 1.5 mm, feed rate: 0.3 mm/rev) was the most preferred and ideal to be used during the turning machining process as it consumed less energy usage.

Composite Materials

012029
The following article is Open access

, , and

The main drawback of using natural fibers in composite boards is its hydrophilic properties which absorb a high volume of moisture. This results in low dimensional stability of the produced composite boards. Hence, the purpose of this study is to investigate the effects of fibers' treatment processes of the rattan waste fibers on the dimensional stabilities of composite boards. The collected fibers underwent two types of retting processes, namely a water treatment and alkaline treatment retting processes; where the fibers were soaked in water and a 1% sodium hydroxide (NaOH) solution, respectively. The fibers were dried and mixed with poly(lactic) acid (PLA) pellets with ratio of 30% fibers: 70% matrix; before being fabricated into composite boards via a hot-pressing process and were labelled as RF/PLA, WRF/PLA, CRF/PLA for untreated rattan, rattan treated by water retting, rattan treated by chemical retting, respectively. The produced composite boards were cut and soaked in water for 24 hours for dimensional stability in terms of water absorption and thickness swelling tests. The results showed that WRF/PLA has the lowest water absorption (3.2%), and the CRF/PLA had the highest water absorption (23.2%). The thickness swelling showed a similar trend as water absorption. The presence of void contents and fibers damaged the insides of the boards, which contributed to low dimensional stabilities of the composite boards. It can be concluded that water retting facilitated in improving dimensional stability of the produced composite board.

012030
The following article is Open access

, , and

Pineapple leaf fibre (PALF) is a waste material of pineapple plants. PALF is abundant in amount for industrial purpose, cheap, easily available, high specific strength and stiffness. PALF is contributing a sustainable development in bio-composites as reinforcement material. However, natural fibres are not fully compatible with matrix due to hydrophilic in nature. To enhance the compatibility with matrix, fibres are modified its surface to make good interfacial bonding with matrix. In this research, PALF is treated with 3% and 6% concentration of NaOH for 3h, 6h 9h, and 12h soaking time. Surface modification of fibres was investigated by using scanning electron microscopy. Single fibre test and diameter of PALF fibres were evaluated the effects of NaOH treatments.

012031
The following article is Open access

, , and

This study examined the physical behaviour of Coir fibres (CF)/Pineapple leaf fibres (PALF)/Poly lactic acid (PLA) composites. In this research, coir and PALF reinforced PLA hybrid composites were fabricated by hand lay-up process and hot press. The aim of this work is to do comparative study on density, water absorption (WA) and thickness swelling (TS) of untreated CF/PALF reinforced PLA composites and hybrid composites. The effect of different fibre ratios in hybridization on density, WA and TS of CF/PALF hybrid composites were also analyzed and C7P3 showed highest density while P30 had lowest. The results indicated that the density varies on different fibre ratio. WA and TS of CF/PALF composites and hybrid composites vary with fibres ratio and soaking duration. WA and TS of untreated CF/PALF hybrid composites were increased by increasing coir fibre ratio so, C30 showed highest WA and TS whereas P30 and C1P1 showed least WA and TS respectively apart from neat PLA.

012032
The following article is Open access

, and

This paper reports on the development of a composite-based natural fiber to reduce the reliance on petroleum-based product in order to amplify environmental awareness. The production of Durian Skin Nanofiber (DSNF) was conducted using biological fermentation method via rhizopus oryzae in order to obtain the nano dimension of the particle size. Polypropylene (PP) and DSNF were produced using Haake internal mixer via melt blending technique. The significant effect of maleic anhydride grafted polypropylene (MAPP) on the properties of PP/DSNF nanocomposite was investigated to study its mechanical properties which are tensile strength and thermal stability using thermogravimetric (TGA) and differential scanning analysis (DSC). The tensile property of PP nanocomposites increased from 33 MPa to 38 MPa with the presence of MAPP. The addition of MAPP also increased the thermal stability of PP/DSNF nanocomposite where the char residue increased by 52%. Besides that, the thermal degradation of PP/DSNF and PP/DSNF-MAPP were higher than PP where they exerted higher amount of weight loss at an elevated temperature. The percentage of crystallinity, %Xc, of PP nanocomposites improved with the addition of MAPP by 35% based on the differential scanning calorimetry (DSC) result. The SEM analysis showed that the PP/DSNF-MAPP exerts ductile fracture while PP/DSNF exerts brittle fracture.

012033
The following article is Open access

, , , and

In this research study, it presents a comprehensive mathematical model for correlating the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates using the Box Behnken experimental design. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated HSS drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs.

012034
The following article is Open access

, and

The purpose of this research was to evaluate the influence of dose level of electron beam on the compatibilization behavior of recycled polypropylene (rPP) in rPP/microcrystalline cellulose (MCC) composites. Initially, the rPP was irradiated with various dose of electron beam (5 kGy up to 250 kGy) which then mixed with unirradiated rPP (u-rPP) at a ratio of 30:70 respectively. The composites were prepared by incorporating a series wt% of MCC fibers into rPP (u-rPP : i-rPP) using extruder and finally moulded with an injection moulding machine. The compatibility behavior of irradiated rPP (i-rPP) were analysed with mechanical tensile and thermal methods. The results of mechanical analysis showed great improvement in tensile modulus but an increase in radiation dosage gradually decreased this property. Nevertheless, the tensile strength exhibited a minor effect. The thermal stability of composites is lowered with increase in the absorbed dose, more significantly at higher content of MCC. Fracture surface observations reveal adhesion between the cellulose and rPP matrix.

Machining and Welding

012035
The following article is Open access

, and

Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.

012036
The following article is Open access

, , and

Ductile regime machining can produce crack free surface on brittle material under certain controlled cutting conditions. Although end milling is a versatile process, it has not been frequently applied for machining soda lime glass. The brittle nature of the soda lime glass makes the machining difficult. Soda lime glass is a strain rate and temperature sensitive material. Therefore, high speed machining can be beneficiary to achieve ductile surface with low roughness. Hence, proper combination of cutting parameters needs to identify. In this paper, the effects of cutting parameters such as spindle speed, feed rate and depth cut on the surface roughness parameters Ra, Rq and Rt are investigated to assess machinability of soda lime glass during high-speed end milling. Regression models are generated and process parameters are optimized using the Central Composite Design (CCD) of Response Surface Methodology (RSM). The uncoated tungsten carbide tool was used to conduct milling operation. Experimental verification of optimal condition, spindle speed 40,000 rpm, feed rate 10 mm/min and depth of cut 34 µm confirmed that ductile surface with Ra, Rq and Rt of 0.33µm, 0.49µm and 6.59 µm respectively possible to achieve.

012037
The following article is Open access

, , and

Soda lime glass has application in DNA arrays and lab on chip manufacturing. Although investigation revealed that machining of such brittle material is possible using ductile mode under controlled cutting parameters and tool geometry, it remains a challenging task. Furthermore, ability of ductile machining is usually assed through machined surface texture examination. Soda lime glass is a strain rate and temperature sensitive material. Hence, influence on attainment of ductile surface due to adiabatic heat generated during high speed end milling using uncoated tungsten carbide tool is investigated in this research. Experimental runs were designed using central composite design (CCD), taking spindle speed, feed rate and depth of cut as input variable and tool-chip contact point temperature (Ttc) and the surface roughness (Rt) as responses. Along with machined surface texture, Rt and chip morphology was examined to assess machinability of soda lime glass. The relation between Ttc and chip morphology was examined. Investigation showed that around glass transition temperature (Tg) ductile chip produced and subsequently clean and ductile final machined surface produced.

012038
The following article is Open access

, and

In glass machining crack free surface is required in biomedical and optical industry. Ductile mode machining allows materials removal from brittle materials in a ductile manner rather than by brittle fracture. Although end milling is a versatile process, it has not been applied frequently for machining soda lime glass. Soda lime glass is a strain rate and temperature sensitive material; especially around glass transition temperature Tg, ductility increased and strength decreased. Hence, it is envisaged that the generated temperature by high-speed end milling (HSEM) could be brought close to the glass transition temperature, which promote ductile machining. In this research, the objective is to investigate the effect of high speed machining parameters on generated temperature. The cutting parameters were optimized to generate temperature around glass transition temperature of soda lime using response surface methodology (RSM). Result showed that the most influencing process parameter is feed rate followed by spindle speed and depth of cut to generate temperature. Confirmation test showed that combination of spindle speed 30,173 rpm, feed rate 13.2 mm/min and depth of cut 37.68 µm generate 635°C, hence ductile chip removal with machined surface Ra 0.358 µm was possible to achieve.

012039
The following article is Open access

, , and

Soda lime glass milling has high performance application. It is a challenging task to achieve fracture free surface on this material due to its brittle nature. High-speed end milling is capable to achieve ductile mode in an enhance flexibility. In this research, end milling of soda lime using uncoated carbide tool was performed where spindle speed varied from 20,000 to 40,000 rpm, cutting depth from 10 to 30 µm and feed rate from 5 to 20 mm/min in dry condition. The effects of cutting parameters (cutting speed, feed per tooth and depth of cut) on tool flank wear as well as wear mechanisms of tool flank investigated. Investigation showed that feed per edge has most influencing effect followed by cutting speed and depth of cut on flank wear and the main wear mechanism is abrasion wear. In some cases, oxidation, thermal diffusion and recast layer on tool flank also observed.

012040
The following article is Open access

, , and

Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae), and chip load (fz). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

012041
The following article is Open access

, and

Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

Ceramics & Smart Materials

012042
The following article is Open access

, , , , and

Fabrication of silica ceramics via the sol-gel method has offered more advantages over other methods in the fabrication of ceramic membrane, such as simple operation, high purity homogeneous, well defined-structure and complex shapes of end products. This work presents the fabrication of silica ceramic membrane via sol-gel dip-coating methods by varying nitric acid amount. The nitric acid plays an important role as catalyst in fabrication reaction which involved hydrolysis and condensation process. The tubular ceramic support, used as the substrate, was dipped into the sol of Tetrethylorthosilicate (TEOS), distilled water and ethanol with the addition of nitric acid. The fabricated silica membrane was then characterized by (Field Emission Scanning Electron Microscope) FESEM and (Fourier transform infrared spectroscopy) FTIR to determine structural and chemical properties at different amount of acids. From the XRD analysis, the fabricated silica ceramic membrane showed the existence of silicate hydrate in the final product. FESEM images indicated that the silica ceramic membrane has been deposited on the tubular ceramic support as a substrate and penetrate into the pore walls. The intensity peak of FTIR decreased with increasing of amount of acids. Hence, the 8 ml of acid has demonstrated the appropriate amount of catalyst in fabricating good physical and chemical characteristic of silica ceramic membrane.

012043
The following article is Open access

, , , , , and

In this study, we reported the effect of applied compaction pressure on green body and electric current heating on ceramic bar on the ZnO crystal growth and its photoluminescence characteristic. Crystals grown on ZnO bar sintered by 1100 °C were mostly on (1 0 1) orientation. Sample with 3.0 ton and 3.0 A for applied pressure and current, respectively revealed the shortest photoluminescence (PL) wavelength of 409.5 nm with highest emission energy of 3.03 eV.

012044
The following article is Open access

, , , , , , and

Alumina or Aluminium Oxide (Al2O3) is well known for its high strength and hardness. Its low heat retention and low specific heat characteristics make it attractive to be used widely as a cutting tool for grinding, milling and turning processes. Various synthesis methods have been used for the purpose of enhancing the properties of the alumina inserts. However, the optimization process using Hot Isostatic Pressing (HIP) has not been performed. This research aims in finding the optimum parameters in synthesizing the alumina inserts (98Al2O3 1.6ZrO2 0.4MgO, 93Al2O3 6.4ZrO2 0.6MgO and 85Al2O3 14.5ZrO2 0.5MgO) using HIP at different temperatures (1200, 1250 and 1300°C) and sintering time (10, 30 and 60 minutes). Hardness, density, shrinkage and microstructure using SEM were analysed. The optimum sintering condition for the alumina insert was found in 98Al2O3 1.6ZrO2 0.4MgO sintered at 1300°C for 60 minutes for it exhibited the highest values of hardness (1917HV), density (3.95g/cm3), shrinkage (9.6%).

012045
The following article is Open access

, and

The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

012046
The following article is Open access

, and

Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 – 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

012047
The following article is Open access

, , , and

The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

012048
The following article is Open access

, , and

In this study, NiTi synthesized via solid-state sintering from Ni-TiH2 powders in reducing environments using (i) CaH2 (ii) MgH2 and (iii) CaH2 and MgH2 as in situ reducing agent were investigated. The phase formation was characterized by means of scanning electron microscope (SEM), energy-dispersive spectroscope (EDS) and powder X-ray diffraction (XRD), while transformation behavior was analyzed using differential scanning calorimetry (DSC) measurement. Among these three reducing agents, synthesis in reducing environment using CaH2 as in situ reducing agent resulted in the formation of single phase NiTi with enthalpy change of 25-26 J/g, which is similar to melt-cast NiTi alloys. Specimens sintered in reducing environments using MgH2 and MgH2+CaH2 as in situ reducing agents have lower enthalpy change, ∼16-21 J/g compared to CaH2. This work established the fact that, synthesis in different reducing environment appears to have profound effects on the phase formation and transformation behavior of NiTi.

012049
The following article is Open access

and

The raw data extracted from reverse engineering based on vision mostly do not resemble the actual geometrical representation yet. Even though the higher object surface reflected the most visible light towards the camera and yield higher number of value based on Lambertian illumination model, this does not mean the curvature profile are always accurate. After all, there are many mathematical models to shape curvature profiles into the correct representation. However, one of the most appropriate models found is the natural logarithm function. The function itself has alteration properties towards the raw data generated from reverse engineering based on vision.

Mechanical Engineering

012050
The following article is Open access

, , and

This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.

012051
The following article is Open access

, , and

Dust and fiber have been identified among the highest contributor for the defect in automotive painting line with range from 40% to 50% of total defect breakdown. Eventually, those defects will effect on both visual appearance and also the performance of the parts. In addition, the significance of controlling dust in an assembly line is crucial in order to maintain the quality of the product, part performance yield and effect on workers' health [1]. By considering the principle and technology applied in electronic clean room technology, the ionizer have been introduce to control dust contamination in automotive painting line. The first auto maker industry whom found the effectiveness of the clean room application to reduce the defect and production line downtime was Chrysler [2]. By doing so, it's allowed the transmission plant to offer 50 000 mile guarantee on the transmission systems. The main objective of this research is to verify the effectiveness of ionizer device in order to reduce the rejection contribute by dust and fiber particle in the automotive painting line. Towards the main objective, a few sub areas will be explored, as a supporting factor to ensure the result gain from this study is solid and constructive. The experiment start by verifying the electrostatic value of the raw material (substrate) before and after the ionizer treatment. From here the correlation of the electrostatic value generated by the raw material that effect to production pass rate can be explored. At the meantime, the performance of the production pass rate after the ionizer treatment which related to the painted surface area can be determined.

012052
The following article is Open access

and

A small amount of hydrogen made by on-board reformer is added to the normal intake air and gasoline mixture in the vehicle's engine could improves overall combustion quality by allowing nearly twice as much air for a given amount of fuel introduced into the combustion chamber. This can be justified based on the calorific value of Hydrogen (H2) 141.9 MJ/kg while the gasoline (C6.4H11.8) is 47MJ/kg. Different weight % of Pd and GO uses for the reformer model and has conducted simulation by COMSOL software. The best result found for the composition of catalyst (palladium 30% and graphene 70%). The study shows that reformer yield hydrogen 23% for the exhaust temperature of 600-900°C and 20% for 80-90°C. Pumping hydrogen may boost the fuel atomization and vaporization at engine idle condition, which could enhances the fuel combustion efficiency. Thus, this innovative technology would be able to save fuel about 12% and reduce the emission about 35%.

012053
The following article is Open access

, , , , and

The objective of this study is to determine the effects of excess calcium on the handling and mechanical properties of hydrothermal derived calcium phosphate cement (CPC) for bone filling applications. Hydroxyapatite powder was synthesized via hydrothermal method using calcium oxide, CaO and ammonium dihydrogen phosphate, NH4H2PO4 as the calcium and phosphorus precursors respectively. The effects of calcium excess were evaluated by varying the CaO content at 0, 5 and 15 mole %. The precursors were then refluxed in distilled water at 90-100°C and dried overnight until the calcium phosphate powder was formed. CPC was then produced by mixing the synthesized powder with distilled water at the powder-to-liquid (P/L) ratio of 1.5. The result from the morphological properties of CPC shows the increase in agglomeration and particles size with 5 mole % of calcium excess but decreased with 15 mole % of calcium excess in CPC. This result was in agreement with the compressive strength result where the CPC increased its strength with 5 mole % of calcium excess but reduced with 15 mole % of calcium excess. The excess in calcium precursor also significantly improved the setting time but reduced the injectability of CPC.

012054
The following article is Open access

, and

This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

012055
The following article is Open access

, and

The goal of this work is to conduct a transient compressor blade row flow simulation as part of blade flutter modeling. An integral step of blade flutter modeling is the calculation of the aerodynamic damping factor as a function of the possible vibration mode shapes. Using Fourier method, the number of blade passages required for transient flow analysis is kept to a minimum of two for all vibration modes. In this work, a compressor rotor blade row is considered. The vibration modes are obtained using ANSYS mechanical, then, unsteady flow is obtained for vibrating blades with a harmonic motion. Work of the flow on the blade is calculated and hence the aerodynamic damping is obtained.

012056
The following article is Open access

, , , and

Inspection tests for any manufactured structure are compulsory in order to detect the existence of damage.It is to ensure the product integrity, reliability and to avoid further catastrophic failure. In this research, modal analysis was utilized to detect structural damage as one of the Non Destructive Testing (NDT) methods. Comparing the vibration signal of a healthy structure with a non-healthy signal was performed. A modal analysis of an adhesively bonded pipe joint was investigated with a healthy joint as a reference. The damage joint was engineered by inserting a nylon fiber, which act as an impurity at adhesive region. The impact test using hammer was utilized in this research. Identification of shifting frequency of a free supported and clamped pipe joint was performed.It was found that shifting frequency occurred to the lower side by 5%.

Green Technology

012057
The following article is Open access

, , and

The demand of poultry product in Malaysia market shows an escalation throughout the year and expected to increase in the future. The expansion of poultry production has led to environmental concern in relation to their operational impact to environmentAt present, assessment of waste management of poultry production in Malaysia is lacking. A case study research was conducted in a commercial broiler farm to identify and assess the system boundaries in the lifecycle supply chain of broiler chicken production using ISO 14040/44 guidelines. ISO 14040/44 standard includes Life Cycle Assessment (LCA) framework guidelines to evaluate environmental influence associated with a product/process throughout its life span. All attributes associated with broiler operation is defined and the system boundaries is determined to identify possible inputs and outputs in the case study. This paper discuss the initial stage in the LCA process, which set the context of the research and prepare for the stage of Life Cycle Inventory.

012058
The following article is Open access

, , and

An inventory analysis of the life cycle of broiler chicken production from cradle-to-gate perspective was carried out with the aim to identify possible input and output parameters involved in the system. To do so, broiler chicken production in Myra Chicken Farm and Services was investigated in detail. Result shows the inventory data on feed consumption, transportation, physical performance parameter and other utilities that affect the product which is broilers. Broilers production in fact shows escalation year by year because of high demand from consumer. A cradle-to-gate assessment was conducted based on ISO 14040/14044 guidelines. Inventory data was gathered from farmers and available literature. Improving all the input and output system will increase the level of productivity and the cost of the production. Thus, at the end of the research, it will able to make industry player to understand and take into consideration the solutions in order to promote a green broiler chicken production.

012059
The following article is Open access

, , , and

In this paper, climate change and global warming are the biggest current issues in the industrial sectors. The green supply chain managements (GSCM) is one of the crucial input to these issues. Effective GSCM can potentially secure the organization's competitive advantage and improve the environmental performance of the network activities. In this study, the aim is to investigate and examine how a small and medium enterprises (SMEs) stakeholder pressure and top management influence green supply chain management practices. The study is further advance green supply chain management research in Malaysia focusing on SMEs manufacturing sector using structural equation modelling. Structural equation modelling is a multivariate statistical analysis technique used to examine structural relationship. It is the combination of factor analysis and multi regression analysis and used to analyse structural relationship between measure variable and latent factor. This research found that top management support and stakeholder pressure is the major influence for SMEs to adopt green supply chain management. The research also found that top management is fully mediate with the relationship between stakeholder pressure and monitoring supplier environmental performance.

012060
The following article is Open access

, , and

The idea of assimilating green supply chain is to integrate and establish environmental management into the supply chain practices. The study aims to explore how environmental management competitive pressure influences a SME company in Malaysia to incorporate green supply chain integration, which is an efficient platform to develop environmental innovation. This study further advances green supply chain management research in Malaysia by using the method of quantitative analysis to analyze the model developed which data will be collected based on a sample of SMEs in Malaysia in manufacturing sector. The model developed in this study illustrates how environmental management competitive pressure from main competitors affects three fundamental dimensions of green supply chain integration. The research findings suggest that environmental management competitive pressure is a vital driving force for a SME company to incorporate internal and external collaboration in developing green product innovation. From the analysis conducted, the study strongly demonstrated that the best way for a company to counteract competitor's environmental management success is to first implement strong internal green product development process then move to incorporate external environmental management innovation between their suppliers and customers. The findings also show that internal integration of green product innovation fully mediates the relationship of environmental management competitive pressure and the external integration of green product innovation.

012061
The following article is Open access

, , , , , and

In this study, the mechanical properties of gracilaria lichenoides with additional of plasticizer and filler were evaluated. For samples with the addition of 5.5% of plasticizer, produced low tensile strength and this results is vice versa with elongation at break results. The tensile strength of the bioplastic continuously decreases from 14.8 to 2.7MPa as the plasticizer increases up from 1.5% to 5.5%. This phenomenon was analyses under scanning electron microscope (SEM), it shows that, the formation of pores and crystal agglomeration at sample with 5.5% glycerin. To alter these flaws, squid bone is introduce as filler to the bioplastic. Based on the analysis, additional of 6% filler content did alter the tensile strength up to 8 MPa with 3% of the elongation at break.

012062
The following article is Open access

, , , and

Biodiesel is an alternative to non-renewable fossil fuels due to its low gas emission and economical value. This study aims to extract caustic potash (KOH) from spent tea and to optimize the transesterfication process based on parameters such as amount of catalyst, reaction temperature and methanol to oil ratio. The spent tea was first dried at 60°C prior to calcination at 600°C for two hours. Caustic Potash were extracted from the calcined spent tea. The transesterification process was done based on Design of Experiments (DOE) to study the effects of amount of catalyst ranging from 0.5 wt % to 2.5 wt %, reaction temperature from 55°C to 65°C and methanol to oil ratio from 6:1 to 12:1 at a constant agitation rate of 300 rpm for three hours. The calcined spent tea produced was recorded the highest at 54.3 wt % and the extracted catalyst was 2.4 wt %. The optimized biodiesel yield recorded was 56.95% at the optimal conditions of 2.5 wt % amount of catalyst, 65°C reaction temperature and 9:1 methanol to oil ratio.

012063
The following article is Open access

, and

This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.

012064
The following article is Open access

, , and

The trend of global manufacturing competitiveness has shown a significant shift from profit and customer driven business to a more harmonious sustainability paradigm. This new direction, which emphasises the interests of three pillars of sustainability, i.e., social, economic and environment dimensions, has changed the ways products are designed. As a result, the roles of design tools in the product development stage of manufacturing in adapting to the new strategy are vital and increasingly challenging. The aim of this paper is to review the literature on the attributes of design tools with regards to the sustainability perspective. Four well-established design tools are selected, namely Quality Function Deployment (QFD), Failure Mode and Element Analysis (FMEA), Design for Six Sigma (DFSS) and Design for Environment (DfE). By analysing previous studies, the main attributes of each design tool and its benefits with respect to each sustainability dimension throughout four stages of product lifecycle are discussed. From this study, it is learnt that each of the design tools contributes to the three pillars of sustainability either directly or indirectly, but they are unbalanced and not holistic. Therefore, the prospective of improving and optimising the design tools is projected, and the possibility of collaboration between the different tools is discussed.

012065
The following article is Open access

, , , and

From the environmental point of view, biodegradable materials have been rapidly developed in the past years. PVA is one of the biodegradable synthetic polymers commonly used, but its degradation rate is slow. As an alternative to reduce plastic waste and accelerate the degradation process, PVA frequently blended with other natural polymers to improve its biodegradability. The natural polymer such as starch has high potential in enhancing PVA biodegradability by blending both components. The usage of starch extracted from agriculture wastes such as jackfruit seed is quite promising. In this study, jackfruit seed starch (JFSS)/poly (vinyl alcohol) (PVA) blend films were prepared using the solution casting method. The effect of starch content on the mechanical (tensile strength and elongation to break %) and physical properties of the tested films were investigated. The optimum tensile strength was obtained at 10.45 MPa when 4 wt. % of starch added to the blend. But, decreasing trend of tensile strength was found upon increasing the amount of starch beyond 4 wt. % in starch/PVA blend films. Nevertheless, elongation at break decreases with the increase in starch content. The mechanical properties of the blend films are supported by the Field Emission Scanning Electron Microscopy (FESEM), in which the native JFSS granules are wetted by PVA continuous phase with good dispersion and less agglomeration. The incorporation of JFSS in PVA has also resulted in the appearance of hydrogen bond peak, which evidenced by Fourier Transform Infrared (FTIR). Additionally, the biodegradation rate of JFSS/PVA was evaluated through soil burial test.

Manufacturing Engineering & Allied Area

012066
The following article is Open access

, , , and

This study investigates the variation of tool engagement for different profile of cutting. In addition, behavior of cutting force and cutting temperature for different tool engagements for machining a pocket also been explored. Initially, simple tool engagement models were developed for peripheral and slot cutting for different types of corner. Based on these models, the tool engagements for contour and zig zag tool path strategies for a rectangular shape pocket with dimension 80 mm x 60 mm were analyzed. Experiments were conducted to investigate the effect of tool engagements on cutting force and cutting temperature for the machining of a pocket of AISI H13 material. The cutting parameters used were 150m/min cutting speed, 0.05mm/tooth feed, and 0.1mm depth of cut. Based on the results obtained, the changes of cutting force and cutting temperature performance there exist a relationship between cutting force, cutting temperature and tool engagement. A higher cutting force and cutting temperature is obtained when the cutting tool goes through up milling and when the cutting tool makes a full engagement with the workpiece.

012067
The following article is Open access

and

In this study, overcut and taper angle were investigated in machining of stainless steel UNS S30400 against three different electrical discharge machining parameters which are electric current (Ip), pulse on-time (Ton) and pulse off-time (Toff). The electrode used was of 1 mm diameter with aspect ratio of 10. Dimensional accuracy was measured by evaluating overcut and taper angle. Those two measurements were performed using optical microscope model (Olympus BX41M, Japan). The experimentation planning, evaluation, analysis and optimization have been carried out using DOE software version 10.0.3 RSM based method with total number of twenty experiments. The research reveals that, discharge current was found to have the most significant effect on overcut and taper angle followed by pulse on-time and pulse off-time. As the discharge current and pulse on-time increase, overcut and taper angle are increased. However, when pulse off-time increases, overcut and taper angle decrease. The outcome result of this study will be very useful in the manufacturing industry to select the appropriate parameters for the selected work material. The model has shown a great accuracy with percentage error of less than 5%.

012068
The following article is Open access

, , , , and

Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.

012069
The following article is Open access

, and

Computational Fluid Dynamics (CFD) softwares have been prevalent in Abrasive Waterjet (AWJ) Modelling for optimization and prediction. However, there are many different methods in approaching a single problem especially in predicting the erosion rate of nozzle which is critical in influencing kerf quality of AWJ cutting. In this paper, three main methods of assembly meshing for an abrasive waterjet erosion were simulated which is Quadrilateral, Cutcell and Tetrahedrons and each processing time, quality of convergence and accuracy of results are discussed. Results shows that Quadrilateral mesh prevails in the mentioned category followed by Tetrahedrons and Cutcell.

012070
The following article is Open access

and

Core and cavity is one of the important components in injection mould where the quality of the final product is mostly dependent on it. In the industry, with years of experience and skill, mould designers commonly use commercial CAD software to design the core and cavity which is time consuming. This paper proposes an algorithm that detect possible undercut features and generate the core and cavity. Two approaches are presented; edge convexity and face connectivity approach. The edge convexity approach is used to recognize undercut features while face connectivity is used to divide the faces into top and bottom region.

012071
The following article is Open access

, and

3D imaging technologies have undergone massive revolution in recent years. Despite this rapid development, documentation of 3D cultural assets in Malaysia is still very much reliant upon conventional techniques such as measured drawings and manual photogrammetry. There is very little progress towards exploring new methods or advanced technologies to convert 3D cultural assets into 3D visual representation and visualization models that are easily accessible for information sharing. In recent years, however, the advent of computer vision (CV) algorithms make it possible to reconstruct 3D geometry of objects by using image sequences from digital cameras, which are then processed by web services and freeware applications. This paper presents a completed stage of an exploratory study that investigates the potentials of using CV automated image-based open-source software and web services to reconstruct and replicate cultural assets. By selecting an intricate wooden boat, Petalaindera, this study attempts to evaluate the efficiency of CV systems and compare it with the application of 3D laser scanning, which is known for its accuracy, efficiency and high cost. The final aim of this study is to compare the visual accuracy of 3D models generated by CV system, and 3D models produced by 3D scanning and manual photogrammetry for an intricate subject such as the Petalaindera. The final objective is to explore cost-effective methods that could provide fundamental guidelines on the best practice approach for digital heritage in Malaysia.

012072
The following article is Open access

, , , , , and

The effect of cutting parameters on the performances of ZTA-MgO ceramic cutting tool investigated. The aim of this project is to discover the effect of cutting speed and feedrate on the performance of the ZTA-MgO cutting tool via wear and surface roughness measurement. CNC turning machining performed using the cutting speed, Vc range from 354 to 471 m/min and the feed rate, f 0.1, 0.3 and 0.5 mm/rev while the depth of cut, d is kept constant at 0.2 mm. The flank wear, crater wear, and chipping were measured accordingly using optical microscope, Matlab programming and SEM. Surface roughness of machined stainless steel 316L surface were measured using the surface roughness tester (Mitutoyo MTR097-8. The result showing the increment trend of flank wear with increment of cutting speed and feed rate with the lowest value of flank wear, 0.061 mm achieved at Vc = 354 m/min and f = 0.1 mm/rev while the highest flank wear is 0.480 mm at Vc = 471 m/min and f = 0.5 mm/rev. The increasing pattern also observed in the crater wear results. The lowest area of crater wear is 2.2736 mm2 at Vc = 354 m/min and f = 0.1 mm/rev while the highest value is 4.8524 mm2 at Vc = 471 m/min and f = 0.5 mm/rev. As for the surface roughness, the higher the cutting speed, the lower the average roughness (Ra) value. Cutting speed, Vc = 471 m/min with f = 0.1 mm/rev has the lowest value of Ra which is 0.72µm.

012073
The following article is Open access

, and

A secondary Ni/Zn microbattery (∼200 µm thick) has been developed in a coplanar electrode configuration. The cell is essentially of a circular shape (∼30 mm in diameter) consisting of a fine circular ring (cathode) and a circle (anode) split apart (~800 µm). Unlike the stacking cell architecture, coplanar configuration offers simple design, ease of fabrication and eventually cost saving. The use of MCM-41 mesoporous silica as the membrane separator cum electrolyte reservoir enables the successful implementation of coplanar configuration. The fabrication of Ni/Zn microbattery first begins with electrodeposition of zinc (Zn) and nickel hydroxide (Ni(OH)2) thin films onto patterned FR4 printed circuit board, followed by deposition of zinc oxide (ZnO) slurry onto the zinc active layer, and finally ends by multiple drop-coating procedures of MCM-41 from its precursor solution at ambient temperature. Once a potassium hydroxide (6 M KOH)/MCM-41 electrolyte-separator mixture is incorporated, the cell is sealed with an acrylic sheet and epoxy adhesive. The fabricated microbatteries were capable to sustain around 130 deep charge-discharge cycles. When rated at 0.1 mA, the energy density of the microbattery was around 3.82 Wh l-1 which is suitable for low rate applications and storage for micro energy harvesters such as piezoelectric generators.

Polymeric Materials & Coating Tribology

012074
The following article is Open access

, , , and

Membrane technology has several advantages such as the ability to separate chemical species within compact plant footprints, low thermal energy requirements and simple process flow schemes. By optimizing the available materials and analysis, this work comes with the objective to synthesize the polymeric membrane, which has the best separation performance. In this work, three (03) membranes have been synthesized and a comparative analysis were conducted based on different types of solvent namely N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidinone (NMP). In characterizing the synthesized membrane, Thermo Gravimetric Analysis (TGA), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis were used. A comparative study was carried out to compare the effects of each solvent towards CO2 separation performance.

012075
The following article is Open access

, , , and

The effect of powder-to-liquid ratio and addition of poly(ethylene glycol) on the antiwashout behavior of calcium phosphate cement has been investigated. Calcium hydroxide, Ca(OH)2, and diammonium hydrogen phosphate, (NH4)2HPO4, were used as precursors with distilled water as the solvent in the wet chemical precipitation synthesis of hydroxyapatite powder. Cement paste was prepared by mixing the as-synthesized powder with distilled water at certain ratios, varied at 1.0, 1.3, 1.5 and 1.6. Poly(ethylene glycol) was added into distilled water, varied at 1, 2, 3, 4 and 5 wt% using the powder-to-liquid ratio of 1.3. The antiwashout properties of the cement has been investigated by soaking in Ringer's solution for 3 and 7 days. The evolution of compressive strength of calcium phosphate cement before and after soaking have been determined. After 7 days soaking, the strength of the cement increased by 94.4%, 2.98%, 11.39% and 111.29% for powder-to-liquid ratios 1.0, 1.3, 1.5 and 1.6 respectively. The addition of poly(ethylene glycol) up to 3% shows an increase in strength after 7 days soaking, with 57.75%, 16.4% and 19.97% increase for 1, 2 and 3% poly(ethylene glycol) contents respectively. The calcium phosphate cement produced in this current study shows excellent antiwashout behavior since no cement dissolution happened and the compressive strength of the cement increased with soaking time throughout 7 days soaking in Ringer's solution.

012076
The following article is Open access

, , , and

This paper focus on feedstock preparation for SS316L metal injection molding (MIM) part. The primary step of feedstock preparation, critical powder loading determined by two method; maximum filled volume calculation model and torque analysis. The critical powder loading determined by calculation was 70 vol% to 77 vol% while for experimental approaches shows the value of 75 vol%. The feedstock was prepared by mixing SS316L powder and polymer binder with ratio 70:30 at 175 °C with speed of 50 rpm. The feedstock was analyzed by thermogravimetric analysis (TGA) and Scanning electron microscope (SEM). The composition for the feedstock after preparation step was confirmed by TGA. It was found that the prepared feedstock component was compatible to each other and composition is maintain along the mixing step.

012077
The following article is Open access

, and

Due to its biodegradability and renewability, polylactic acid (PLA) has been receiving enormous attention as a potential candidate to replace petroleum based polymers. However, PLA has limitation due to its inherent brittleness. In order to overcome this limitation, blending PLA with elastomeric materials such as natural rubber (NR) are commonly reported. In previous, several researches on PLA/NR blend had been reported, with most of them evaluated the mechanical properties. On the other hand, study of degradation behavior is significance of importance, as controlling materials degradation is required in some applications. This research studied the effect of blend composition on mechanical properties, morphology development, and hydrolytic degradation behavior of PLA/NR blends. Various compositions of PLA/NR blends were prepared by melt blending technique. Tensile test and impact test of the blends were performed to evaluate the mechanical properties. Addition of NR improved the elongation at break and impact strength of the blends, but reduced the tensile strength and stiffness of the specimens. Dynamic Mechanical Analysis (DMA) measurements of the blends displayed two peaks at temperature -70˚C which corresponded to Tg of NR and 65˚C which corresponded to Tg of PLA. Field Emission Scanning Electron Microscopy (FE-SEM) micrograph of 70/30 PLA/NR specimen also showed two distinct phases, which lead to indication that PLA/NR blends are immiscible. Hydrolytic degradation behavior was evaluated by measuring the remaining weight of the samples immersed in sodium hydroxide solution for a predetermined times. It was shown that the degradation behavior of PLA/NR blends is affected by composition of the blends, with 100 PLA and 70/30 PLA/NR blend showed the fastest degradation rate and 100 NR displayed the slowest one.

012078
The following article is Open access

, , and

Nanocoatings industry has been aggressive in searching for cost-effective alternatives and environmental friendly approaches to manufacture products. Nanocoatings represent an engineering solution to prevent corrosion of the structural parts of ships, insulation and pipelines industries. The adhesion and hardness properties of coating affect material properties. This paper reviews ZnO-SiO2 as nanopowder in nano coating formulation as the agent for new and improved coating performances. Carbon steel on type S50C used as common substrate in nanocoating industry. 3wt% ZnO and 2wt% SiO2 addition of nanoparticles into nanocoating showed the best formulation since hardness and adhesion of nanocoating was good on carbon steel substrate. Incorporation of nanoparticles into coating increased the performances of coating.

012079
The following article is Open access

, , , and

Electrodeposition of polypyrrole (PPy) and poly (m-aminophenol) (PMAP) films on mild steel (MS) substrate was achieved in 0.3M oxalic acid solution and 0.3M NaOH, water:ethanol (70:30) solvent respectively using cyclic voltammetry technique. The morphology of the films constructed was determined by scanning electron microscope (SEM) while energy dispersive X-Ray analyzer (EDX) was used to establish the presence of organic PMAP and PPy film coating and its compositions. The corrosion performance of MS coated with both polymer films were investigated after 0.5 hours immersed in 0.5M NaCl aqueous solution by using polarization curves. It was found that PPy coating provides anodic protection while PMAP coating provides cathodic protection towards corrosion protection of mild steel substrate.

012080
The following article is Open access

, and

Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.

012081
The following article is Open access

, , , and

Polylactic acid (PLA) is known to be brittle by nature and thus limits the flexibility of the polymer. A possible solution to enhance the flexibility of PLA is to add a flexible polymeric based material such as thermoplastic polyurethane (TPU). In this study, 30-50 wt% of TPU was added into PLA/curcumin blends to improve its flexibility. Thermal analysis using differential scanning calorimetry shows that further additions of TPU at the expense of PLA did not affect the glass transition temperature, crystallisation temperature and melting temperature of the blends. Fibers of PLA/curcumin/TPU were successfully drawn and Single Fiber Tensile Test (SFTT) showed vast improvement in elongation at break. The initial addition of 30 wt% of TPU to the brittle PLA/curcumin composition causes a significant increase in elongation at break by 39 times and further additions at 50 wt %, the elongation at break increases by 105 times. However, with the increase in elongation, a decrease in strength and Young's modulus was observed.

Metal Foam & Corrosion

012082
The following article is Open access

, , and

Low-velocity impact tests of unfilled and foam-filled Kraft paper honeycomb are carried out to investigate the effect of foam, indenter size and location of indentation on maximum or peak force and energy absorption capability. In this study, three indenter sizes (10mm, 12mm, 15mm) and three different locations of indentation (vertical edge, double wall and single wall) were used and compared. The test results show that the foam is given a significant increment of peak force and specific energy absorption to the honeycomb structure subjected to indentation load. The peak force and energy absorption capability also effected by indenter size which due to the contact area of indentation. As for the location of indentation, vertical edge gives highest peak force and energy absorption by the fact that vertical edge is the intersection of three walls of honeycomb cell.

012083
The following article is Open access

, , , and

Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers' shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

012084
The following article is Open access

, , , and

Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

012085
The following article is Open access

, , and

Fe-Cr alloy is commonly being used as boiler tube's material. It is subjected to prolonged exposure to water vapor oxidation. The ability to withstand high temperature corrosion can normally be attributed to the formation of a dense and slow growing Cr-rich-oxide scale known as chromia, Cr2O3 scale. However, oxidation may limit the alloy's service lifetime due to decreasing of its protectiveness capability. This paper is to presents an experimental study of thermo gravimetric and Fourier transform infrared analysis of Cr2O3 at 1073 K in dry and humid environment. Samples were used from commercially available Cr2O3 powder. It was cold-pressed into pellet shape of 12 mm diameter and 3 mm thick with hydraulic press for 40 min at 48 MPa. It then sintered at 1173 K in inert gas environment for 8 h. The samples are cooled and placed in 5 mm diameter platinum pan. It is subjected to reaction in dry and wet environment at 1073 K by applying 100%-Ar and Ar-5%H2 gas. Each reaction period is 48 h utilizing Thermo Gravimetric Analyzer, TGA to quantify the mass changes. After the reaction, the samples then characterized with Fourier Transform Infrared Spectroscopy, FT-IR and Field Emission Electron Scanning Microscopy, FE-SEM. The TGA result shows mass decreasing ratio of Cr2O3 in wet (PH2O = 9.5x105Pa) and dry environment is at a factor of 1.2 while parabolic rate at 1.4. FT-IR results confirmed that water vapor significantly broaden the peaks, thus promotes the volatilization of Cr2O3 in wet sample. FESEM shows mostly packed and intact in dry while in wet sample, slightly porous particle arrangement compare to dry. It is concluded that water vapor species decreased Cr2O3 protectiveness capability.

012086
The following article is Open access

, and

Corrosion inhibitor from extraction of plant has been considered as the most preferable and most chosen technique to prevent corrosion of metal in acidic medium because of the environmental friendly factor. In this study, black tea leaves extraction was tested as corrosion inhibitor for mild steel in 0.1M of hydrochloric acid (HCl) with the absence and presence of corrosion inhibitor. The efficiency and effectiveness of black tea as corrosion inhibitor was tested by using corrosion weight loss measurement experiment was carried out with varies parameters which with different concentration of black tea extract solution. The extraction of black tea solution was done by using aqueous solvent method. The FT-IR result shows that black tea extract containing compounds such as catechin, caffeine and tannins that act as anti-corrosive reagents and responsible to enhance the effectiveness of black tea extract as corrosion inhibitor by forming the hydrophobic thin film through absorption process. As a result of weight loss measurement, it shows that loss in weight of mild steel reduces as the concentration of inhibitor increases. The surface analysis was done on the mild steel samples by using SEM.

012087
The following article is Open access

, and

Ginger extract as corrosion inhibitor from natural resources was studied to prevent corrosion of mild steel in acid media. Ginger rhizome was extracted to produce green corrosion inhibitor (G-1) while ginger powder bought at supermarket was also extract to form green corrosion inhibitor (G-2). Effectiveness of inhibitor in preventing corrosion process of mild steel was studied in 1.0 M of hydrochloric acid. The experiment of weight loss method and polarization technique were conducted to measure corrosion rate and inhibition efficiency of mild steel in solution containing 1.0 M of hydrochloric acid with various concentration of inhibitor at room temperature. The results showed that, the rate of corrosion dropped from 8.09 mmpy in solution containing no inhibitor to 0.72 mmpy in solution containing 150g/l inhibitor while inhibition efficiency up to 91% was obtained. The polarization curve in polarization experiments shows that the inhibition efficiency is 86% with high concentration of inhibitor. The adsorption of ginger extract on the surface of mild steel was observed by using optical microscope and the characterization analysis was done by using pH measurement method. When high concentration of green inhibitor in the acid solution is used, the pH at the surface of steel is increasing.

012088
The following article is Open access

, , and

Recently, extensive researches have been done on memristor to replace current memory storage technologies. Study on active layer of memristor mostly involving n-type semiconductor oxide such as TiO2 and ZnO. This paper highlight a simple water vapour oxidation method at 423 K to form Cu/Cu2O electronic junction as a new type of memristor. Cu2O is a p-type semiconductor oxide, was used as the active layer of memristor. Cu/Cu2O/Au memristor was fabricated by thermal oxidation of copper foil, followed by sputtering of gold. Structural, morphological and memristive properties were characterized using XRD, FESEM, and current-voltage, I-V measurement respectively. Its memristivity was indentified by pinch hysteresis loop and measurement of high resistance state (HRS) and low resistance state (LRS) of the sample. The Cu/Cu2O/Au memristor demonstrates comparable performances to previous studies using other methods.