Table of contents

Volume 674

2016

Previous issue Next issue

The International Workshop on Positron Studies of Defects 2014 14–19 September 2014, Kyoto, Japan

Accepted papers received: 01 December 2015
Published online: 26 January 2016

Preface

011001
The following article is Open access

and

The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14–19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows:

• Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

011002
The following article is Open access

All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.

Papers

Defects in metals

012001
The following article is Open access

, , , , and

Bulk materials with ultra fine grain structure can be fabricated by severe plastic deformation. Among variety of techniques based on severe plastic deformation high pressure torsion is the most efficient method for grain refinement down to nano-scale. In torsion deformation the strain distribution across the sample is non-uniform and increases with increasing radial distance from the centre of the sample corresponding to the axis of torsional straining. Due to this reason it is very important to examine homogeneity of ultra fine grained structure of samples prepared by high pressure torsion. In the present work positron annihilation spectroscopy was employed for mapping of spatial distribution of defects in ultra fine grained copper prepared by high pressure torsion. Spatial distribution of defects was examined by means of (i) Doppler broadening using S parameter for mapping of defect density and (ii) positron lifetime spectroscopy. Spatially resolved positron annihilation studies were combined with mapping by microhardness testing. Hardness is sensitive to dislocation density due to work hardening but is practically not affected by vacancies while positron annihilation is sensitive both to dislocations and vacancies. Our investigations revealed that ultra fine grained copper contains dislocations and vacancy clusters created by agglomeration of deformation-induced vacancies. Average size of vacancy clusters increases with increasing radial distance from the centre of the sample due to higher production rate of vacancies resulting in larger clusters. During high pressure torsion deformation microhardness increases firstly at the periphery of the sample due to the highest imposed strain. With increasing number of high pressure torsion revolutions the hardness increases also in the centre and finally becomes practically uniform across the whole sample indicating the homogeneous distribution of dislocations. Doppler broadening mapping revealed a remarkable increase of S parameter at the sample periphery due to larger size of vacancy clusters. The S parameter remains significantly enhanced at the periphery even after 25 revolutions. Hence, contrary to dislocation density spatial distribution of vacancy clusters is far from being uniform even after prolonged high pressure torsion deformation.

012002
The following article is Open access

, , , , and

High-energy-particle irradiation in metals produces cascade damage. If the particle energy is high enough, a cascade is divided into subcascades. In each subcascade, a vacancy rich area is surrounded by an interstitial area. Vacancy clusters are expected to form directly in the vacancy rich area. In this study, the vacancy cluster formation ratio in subcascades was estimated by positron annihilation lifetime spectroscopy and transmission electron microscopy in commercial stainless steels and their model alloys. The vacancy cluster formation ratio was 1.7×10-3 and 9.1×10-5 in austenitic stainless steel and ferritic/martensitic stainless steel, respectively

012003
The following article is Open access

, , , , , and

The effect of Cu content on the evolution of defects in Fe-x%Cu alloys (x= 0.15, 0.3, and 0.6) were investigated using Positron Annihilation Lifetime Spectroscopy (PALS). The vacancy-type and Cu-vacancy complexes defects were respectively produced by quenching from 1173 K and cold-rolled deformation followed by isochronal annealing. The PALS results with isochronal annealing showed that the temperature of defects recovery increased in deformed Fe-Cu alloys with Cu content. The increment of Cu content also restrained the migration of vacancies in as-quenched Fe-Cu alloys.

012004
The following article is Open access

, , , , , , and

Magnesium alloys with rare earth (RE) elements are promising structural materials exhibiting favourable mechanical properties at elevated temperatures. However, the processes occurring during early stages of precipitation in these alloys are still not completely understood. In this work positron lifetime spectroscopy combined with coincidence Doppler broadening was employed for investigation of early stages of precipitation in Mg-RE alloys. Presence of quenched-in vacancy clusters was observed after solution treatment of studied alloys. These quenched-in vacancy clusters are bound to RE solutes and thereby stabilized at room temperature. During natural aging, RE clusters are formed by vacancy-assisted long-range diffusion. In addition, hardness of studied materials increases and quenched-in vacancy clusters are annealed out during the course of natural aging. Simple model was developed to describe hardening during natural aging.

012005
The following article is Open access

, , , , , , , , and

Magnesium Mg-based alloys are promising lightweight structural materials for automotive, aerospace and biomedical applications. Recently Mg-Zn-Y system attracted a great attention due to a stable icosahedral phase (I-phase) with quasicrystalline structure which is formed in these alloys. Positron lifetime spectroscopy and in situ synchrotron X-ray diffraction were used to study thermal stability of I-phase and precipitation effects in Mg-Zn-Y and Mg- Zn-Al alloys. All alloys containing quasicrystalline I-phase exhibit misfit defects characterized by positron lifetime of ∼ 300 ps. These defects are associated with the interfaces between I- phase particles and Mg matrix. The quasicrystalline I-phase particles were found to be stable up to temperatures as high as ∼ 370°C. The W-phase is more stable and melts at ∼ 420°C. Concentration of defects associated with I-phase decreases after annealing at temperatures above ∼ 300°C.

012006
The following article is Open access

, and

The formation and accumulation of defects under tensile deformation of hydrogen- charged AISI 410 martensitic steels were investigated by using positron lifetime spectroscopy. During the deformation process, dislocations and vacancy-clusters were introduced and increased with increasing strains. Between hydrogen-charged and uncharged samples with the same tensile strains there was no significant difference in the dislocation density and monovacancy equivalent vacancy density.

012007
The following article is Open access

, , , , and

The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.

012008
The following article is Open access

, , , , and

The Zr-Cu-Al bulk glassy (BG) alloy, which has amorphous structure, possesses various properties such as high strength and toughness with compositional dependence. In the present study, density, positron annihilation lifetime and coincidence Doppler Broadening measurement have been performed for various compositional hyper-eutectic Zr-Cu-Al BG alloys. The density of hyper-eutectic Zr-Cu-Al BG alloys increases with decreasing of Zr fraction. In contrast, positron lifetime for all compositional alloys is almost constant about 165 psec. In addition, the CDB ratio profile is almost the same for hyper-eutectic alloys. This unchanging trend of CDB ratio profile is quite different from that of hypo-eutectic BG alloys. These results reveal that different internal structure exists in hyper and hypo-eutectic BG alloys.

012009
The following article is Open access

, , , , and

Defect structures of austenitic stainless steels and their model alloys after 6 MeV Ni ion irradiation were studied using positron annihilation lifetime measurements and Vickers hardness obtained from micro-hardness measurements. After irradiation at room temperature, a long lifetime of 150-180 ps was obtained and the Vickers hardness increased with increasing the irradiation dose. After irradiation at 573 K, all the alloys exhibited lifetime spectra that were not decomposed into two components. Their hardness also increased with the irradiation dose, but the enhancement was small compared with that at room temperature. Defects introduced by the ion irradiation could be detected near the surface using a Na-22 source. The hardness is correlated with the density and size of the defect clusters.

012010
The following article is Open access

, , , , , and

The microstructural features and the effect of Mo addition in FeCrNi austenitic alloy during incubation period were investigated using positron annihilation technique and micro- Vickers Hardness. The electron irradiation, which could induce vacancy defects in material, was performed at room temperature up to the dose of 1.7×10-4 and 5×10-4 dpa, respectively. The defect concentration was estimated about 10-4–10-7 though the standard trapping model. The added Mo atoms could trap vacancies to form Mo-vacancy complexes, which may restrain the migration and growth of vacancy defects during electron irradiation. In addition, the microstructural evolution during electron radiation resulted in hardening, while the added Mo might improve the hardening property of the alloy.

012011
The following article is Open access

, , , , and

Microstructure of various oxide-dispersion-strengthened (ODS) steels with 15% chromium content was studied in term of vacancy defects presence and their accumulation after defined irradiation treatment, respectively. Studied materials originated from Kyoto University and studied via IAEA collaborative project. Samples were characterized "as received" by positron annihilation lifetime spectroscopy and their microstructure was examined by transmission electron microscopy as well. Samples were afterwards irradiated in Washington State University Nuclear Radiation Center via a strong gamma source (6TBq). Damage induced by gamma irradiation was evaluated by positron lifetime measurements in emphasis on defect accumulation in the materials. We have demonstrated strong defect production induced by gamma irradiation which results from positron measurement data.

012012
The following article is Open access

, , and

The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

Defects in metal oxides

012013
The following article is Open access

, , and

Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

012014
The following article is Open access

, , , , , , , and

Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.

012015
The following article is Open access

, , , and

Positron annihilation coincidence Doppler broadening (CDB) measurements were performed for CeO2 after the high temperature annealing or the electron irradiation. Both the annealing and the electron irradiation, the vacancy-type defects were detected by positron annihilation measurement. In contrast, CDB results showed the different type of vacancies was introduced by annealing and electron irradiation.

012016
The following article is Open access

, , , , , and

In the present work positron lifetime spectroscopy was employed for characterization of radiation-induced defects in yttria stabilized zirconia (YSZ) implanted by 167 MeV Xe ions. Positron lifetime data were interpreted with aid of ab-initio theoretical modelling of defects in YSZ lattice. Damage caused by Xe implantation was investigated in two YSZ samples with different microstructure: (i) single crystal and (ii) sintered ceramic. The virgin YSZ single crystal exhibits single component spectrum with lifetime of ≈ 180 ps. Similar lifetime component was found also in the virgin sample of sintered YSZ ceramic. Since this lifetime is significantly higher than the YSZ bulk lifetime the virgin YSZ crystal and the sintered ceramic both contain vacancy-like defects. Xe implantation leads to appearance of additional defect component with longer lifetime ≈ 370 ps which comes obviously from vacancy clusters fonned by agglomeration of irradiation induced vacancies. A broad absorption band with peak absorption at ≈ 518 nm was found in Xe-implanted crystal by optical measurements.

Polymers and soft matter

012017
The following article is Open access

, , , , , , , , , et al

To clarify the free volume size distributions of the cardo-based polymer membranes, where ortho-positronium (o-Ps) undergoes pick-off annihilation, the o-Ps lifetime distributions were analyzed by the LT9 programme. It was found that the cardo-based polysulfone membrane has much narrower o-Ps lifetime/hole size distributions than the cardo-based polyimide membranes with the 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) moiety. Further, the lifetime/hole size distributions of the cardo-based polymer membranes are appreciably broadened with increasing temperature. This suggests that in these membranes there are holes not only of different sizes but also of different thermal expansion coefficients. It is also shown that in a membrane with a wider hole size distribution the average o-Ps lifetime tends to be longer than would be expected from the correlation between the o-Ps lifetime and the total free volume for common polymers.

012018
The following article is Open access

, , , , , , and

We have estimated a local heating which takes place owing to the ionization energy losses at the terminal part of a fast positron track and at nano-vicinities of the 57Fe Mössbauer nuclei in case of the emission Mössbauer spectroscopy. It is shown that in experiments close to the melting point one may expect local melting near the probe species.

012019
The following article is Open access

, and

In order to investigate the thermal behaviour of radiation induced point defects in nuclear graphite, ETU10 graphite was implanted with 350 keV C+ ion to doses of 1015 and 1016 cm-2. The point defects introduced by the implantation were characterized by Positron Annihilation Doppler Broadening (PADB) and their thermal behaviour was studied during "in situ" annealing at Delft Variable Energy Positron beam (VEP). The annealing was performed for 5 minutes at temperatures ranging from 300 K (as implanted) to 1500 K in steps of 100 K. For both doses, an annealing stage at around 450 K is observed followed by a second stage around 700 K. For the high dose implantation vacancy complexes are found which are stable up to a temperature around 1400K.

Theoretical calculations

012020
The following article is Open access

and

We have computationally studied positron sates and annihilation parameters in semiconductors, especially in group-III nitrides. A random alloy system In0.5Ga0.5N was model with the special-quasirandom-structure scheme and distributions of annihilation parameters for cation monovacancies and divacancies were investigated. On GaN, we calculated annihilation parameters considering spin polarization for Ga vacancies with various charge sate and demonstrated how the positron annihilation technique is useful to study defect-induced or mediated magnetism in dilute magnetic semiconductors. We also made calculations based on the two-component density functional theory and compared their results with those obtained by the conventional scheme.

012021
The following article is Open access

, and

We have performed theoretical calculations of positron states for solute clusters in aluminum alloys to estimate the positron affinity of solute clusters. Positron states of solute clusters in aluminum alloys were calculated under the electronic structures obtained by first- principles molecular orbital calculations using Al158-X13 clusters. We defined the positron affinity of the solute clusters by the difference in the lowest potential sensed by positrons between the solute clusters and Al bulk. With increasing atomic number of 3d metals, the annihilation fraction of the solute clusters rapidly increases at Mn and shows a maximum at Ni. A similar trend is observed for 4d metals. The localization of positron at the solute clusters mainly arises from charge transfer from Al matrix to solute clusters. The positron affinity defined in this work well represents the localization of positron at the solute clusters in aluminum alloys.

012022
The following article is Open access

, and

The first-principles calculations of positron lifetimes of mono-vacancies in crystals were investigated. We use the two-component density functional theory to respectively compute positron lifetimes of neutral charge state of VAl defect in aluminium, VSi defect in silicon, VC, VSi and VC+CSi defects in 3C silicon carbide, VGa and VAs defects in gallium arsenide, taking into account atomic relaxation due to vacancy and electronic structural relaxation due to the presence of the positron. Three different calculation schemes are used. We find that the electron density inside the vacancy more or less increases due to the presence of the positron if the ionic positions are kept fixed, and the positron becomes more localized after the electronic structural relaxation for the case of VAl defect in aluminium and VSi defect in 3C silicon carbide, but it is opposite for the case of VGa defect in gallium arsenide and VC defect in 3C silicon carbide. The results with no consideration of the relaxation are even much closer to the experimental ones, therefore the atomic relaxation due to the position play an important role in calculating the positron lifetime of mono-vacancies in crystals.

012023
The following article is Open access

, and

Positron annihilation Doppler broadening spectroscopy is one of the most popular positron annihilation vacancy characterization techniques in experimental materials research. The measurements are often carried out with a slow positron beam setup, which enables depth profiling of the samples. The key measurement devices of Doppler broadening spectroscopy setups are high-purity germanium detectors. Since Doppler broadening spectroscopy is one of the standard techniques in defect characterization, there is a demand to evaluate different kinds of factors that might have an effect on the results. Here we report the results of Monte Carlo simulations of detector response in different geometries and compare the data to experiments.

Positron beam studies

012024
The following article is Open access

, , , , , , , and

In the present work the structure of Mg films deposited by RF magnetron sputtering was characterized using variable energy positron annihilation spectroscopy combined with scanning electron microscopy and X-ray diffraction. The effect of deposition parameters, namely temperature, type of substrate and deposition rate, on the microstructure was examined. All Mg films studied grow with the basal (0001) plane parallel with the substrate and exhibit only negligible in-plane stress. Films deposited at room temperature are characterized by nanocrystalline structure with high volume fraction of grain boundaries. and positrons are preferentially trapped in open volume defects present at grain boundaries. In these films positrons are trapped predominantly in open-volume defects present at grain boundaries. With increasing deposition temperature the mean grain size increases and the volume fraction of grain boundaries decreases. Hence, in Mg films prepared at elevated temperatures positrons are trapped mainly at misfit dislocations compensating different atomic spacing in the films and the substrate. Moreover, it was found that slow deposition rate leads to higher density of defects compared to fast deposition rate. By annealing of Mg film with thin 20 nm Pd overlayer at 300°C for 1 hour Pd layer is mixed with Mg film forming a Mg-Pd compound. The Mg-Pd phase likely contains structural open-volume defects which trap positrons.

012025
The following article is Open access

, , , , , and

A simple positron annihilation measurement apparatus via pair creation has been developed using high energetic gamma beam generated by laser Compton scattering (LCS) of 1 GeV electrons circulated in a storage ring and laser light with the power more than 1 W at the New SUBARU synchrotron radiation facility, University of Hyogo. This MeV ordered energy changeable positron apparatus is useful to study defects in bulk materials. In this study, the average energy of 8MeV positron was selected by the wavelength of laser light and circulated electron energy in photon factory. As a demonstrate of non-destruction positron measurement by this apparatus, positron annihilation Doppler broadening measurement has performed for bulk size of amorphous and crystal structured Zr based alloys. The larger Doppler broadening S parameter for amorphous alloy than that for crystallized one has been successfully measured.