学位论文详细信息
Autoencoder를 사용한 주파수 영역에서의 지진파 파형의 차원축소
Autoencoder;머신러닝;딥러닝;시계열;탄성파;차원축소;622.33
공과대학 에너지시스템공학부 ;
University:서울대학교 대학원
关键词: Autoencoder;    머신러닝;    딥러닝;    시계열;    탄성파;    차원축소;    622.33;   
Others  :  http://s-space.snu.ac.kr/bitstream/10371/141456/1/000000150020.pdf
美国|英语
来源: Seoul National University Open Repository
PDF
【 摘 要 】

지구물리학은 그 기본 자료 중 하나로 탄성파 혹은 다른 파동, 즉 시계열 자료를 다룬다. 이러한 시계열 자료들은 취득 환경에 따른수많은 개개의 특성을 가지고 있어, 대부분 일반적인 방법으로 처리되지 못하고 사람의 판단이 많이 개입되는 처리과정을 거쳐야만 하였다. 때문에 처리방식의 자동화를 위한 기초적 연구로 최근 범용근사자(universal approximator)의 성질을 지닌 인공 신경망을 이용한 딥러닝이 지구물리 분야에서도 활용되어 왔다. 딥러닝이 가지는 표현 학습(representation learning)으로의 성질을 이용하여 우리가 기존의 시계열 자료에서 발견하지 못한 특성들을 추출함으로써 사람이 개입되지 않는 자료처리 및 영상 이미지 생성 등을 연구하는 논문들이 발표되고 있다. 하지만 이러한 연구들은 아직 초기 단계이며, 많은 결함을 내포하고 있다. 따라서 본 연구에서는 탄성파 자료에 최초로 인공 신경망의 한 종류인 autoencoder를 활용하였던 Valentine & Trampert, 2012의 연구를 기초로 하여, 그의 연구의 한계점인 ;;위상정보로 인한 학습의 왜곡’ 으로 인한 서로 다른 타임 윈도우가 주어졌을 때 동일한 트레이스일지라도 제대로 트레이스가 복원이 되지 않는 문제를 지적하고 그 한계점을 극복할 수 있는 대안으로 ;;위상정보를 배제한 주파수영역에서의 학습’을 제시하였다.

【 预 览 】
附件列表
Files Size Format View
Autoencoder를 사용한 주파수 영역에서의 지진파 파형의 차원축소 2654KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:5次