Understanding the physics and chemistry of the marine atmosphere requires both predicting the evolution of its gas and aerosol phases and making observations that reflect the processes in that evolution. This work presents a model of the most fundamental physical and chemical processes important in the marine atmosphere, and discusses the current uncertainties in our theoretical understanding of those processes. Backing up these predictions with observations requires improved instrumentation for field measurements of aerosol. One important advance in this instrumentation is described for accelerating the speed of size distribution measurements. Observations of aerosols in the marine boundary layer during the Atlantic Stratocumulus Transition Experiment (ASTEX) provide an illustration of the impact of cloud processing in marine stratus. More advanced measurements aboard aircraft were enabled by redesigning the design of the system for separating particles by differential mobility and counting them by condensational growth. With this instrumentation, observations made during the Monterey Area Ship Tracks (MAST) Experiment have illustrated the role of aerosol emissions of ships in forming tracks in clouds. High-resolution gas chromatography and mass spectrometry was used with samples extracted by supercritical fluid extraction in order to identify the role of combustion organics in forming ship tracks. The results illustrate the need both for more sophisticated models incorporating organic species in cloud activation and for more extensive boundary layer observations.