The interaction of a rotating impeller and the working fluid introduce forces on the rotor. These fluid-induced forces can cause self-excited whirl, where the rotor moves away from and whirls along a trajectory eccentric to its undeflected position. When designing a turbomachine, particularly one which is to operate at high speed, it is important to be able to predict the fluid-induced forces, both steady and unsteady, acting on the various components of the machine. The fluid-induced rotordynamic forces acting upon the impeller and therefore on the bearings was investigated for a centrifugal impeller in a spiral volute in the presence of cavitation.An experiment in forced vibration was made to study the fluid-induced rotordynamic force on an impeller whirling around its machine axis of rotation in water. The whirl trajectory of the rotor is prescribed to be a circular orbit of a fixed radius. A dynamometer mounted behind the rotor and rotating with it measures the force on the impeller. The force measured is a combination of a steady radial force due to volute asymmetries and an unsteady force due to the eccentric motion of the rotor. These measurements have been carried out over a full range of whirl/impeller speed ratios at different flow coefficients for various turbomachines. A destabilizing force was observed over a region of positive whirl ratio. Cavitation corresponding to a three percent head loss did not have a significant effect upon this destabilizing force. However, a lesser degree of cavitation at the design point for the impeller-volute combination tested increased this destabilizing force for a particular set of whirl ratios
【 预 览 】
附件列表
Files
Size
Format
View
Experimental investigation of the effect of cavitation on the rotordynamic forces on a whirling centrifugal pump impeller