Explosions are a common phenomena in the Universe. Beginning with the Big Bang, one could say the history of the Universe is narrated by a series of explosions. Yet no matter how large, small, or complex, all explosions occur through a series of similar physical processes beginning with their initiation to their dynamical interaction with the environment. Of particular interest to this study is how these processes are modified in a magnetized medium. The role of the magnetic field is investigated in two scenarios. The first scenario addresses how a magnetic field alters the propagation of a gaseous detonation where the application of interest is the modification of a condensed-phase explosion. The second scenario is focused on the aftermath of the explosion event and addresses how fluid mixing changes in a magnetized medium. A primary focus of this thesis is the development of a numerical tool capable of simulating explosive phenomenon in a magnetized medium. While the magnetohydrodynamic (MHD) equations share many of the mathematical characteristics of the hydrodynamic equations, numerical methods developed for the conservation equations of a magnetized plasma are complicated by the requirement that the magnetic field must be divergent free. The advantages and disadvantages of the proposed method are discussed in relation to explosion applications.
【 预 览 】
附件列表
Files
Size
Format
View
A study of magnetoplasmadynamic effects in turbulent supersonic flows with application to detonation and explosion