学位论文详细信息
Development of synthesis method for spinel ferrite magnetic nanoparticle and its superparamagnetic properties
Nanotechnology;Magnetism;Nanoparticle
Han, Man Huon ; Chemistry and Biochemistry
University:Georgia Institute of Technology
Department:Chemistry and Biochemistry
关键词: Nanotechnology;    Magnetism;    Nanoparticle;   
Others  :  https://smartech.gatech.edu/bitstream/1853/26465/1/han_man_h_200812_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

The magnetic spinel ferrite nanoparticle is exceptionally intriguing nanocrystal system due to the industrial importance of various technical applications and the scientific significance of studying the quantum origin of magnetism. Studies of quantum influences upon magnetic properties have revealed that the spin-orbit coupling and the net magnetization greatly affect the net magnetic properties of each spinel ferrite system differently. In case of cobalt ferrite where spin-orbit coupling is relatively large, increasing Cr3+ doping concentration, which has smaller magnetic moment and zero angular moment, decreases blocking temperature, saturation magnetization, remnant magnetization and coercivity. However, in case of manganese ferrite where spin-orbit coupling is relatively small, increasing Cr3+ doping concentration, reduces all the magnetic parameters except coercivity. The coercivity increases due to smaller magnetocrystalline anisotropy energy constant which forces the coercivity to increase as saturation magnetization decreases in accordance with Stoner-Wohlfarth theory. In order to improve product quality and quantity, synthesis routes in hot oleylamine and aminolytic reaction were developed. Both methods were proven to be extremely effective, environmental friendly, inexpensive, and simple routes in the synthesis of a variety of spinel ferrite systems including CoFe2O4, MnFe2O4, NiFe2O4, and ZnFe2O4 from a single source metal precursor.

【 预 览 】
附件列表
Files Size Format View
Development of synthesis method for spinel ferrite magnetic nanoparticle and its superparamagnetic properties 148664KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:11次