学位论文详细信息
Effects of joint constraints on deformation of multi-body compliant mechanisms
Joint constraint;Large deformation;Compliant mechanism
Guo, Jiajie ; Mechanical Engineering
University:Georgia Institute of Technology
Department:Mechanical Engineering
关键词: Joint constraint;    Large deformation;    Compliant mechanism;   
Others  :  https://smartech.gatech.edu/bitstream/1853/45971/1/Guo_Jiajie_201112_PhD.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Motivated by the interests to understand bio-structure deformation and exploit their advantages to create bio-inspired systems for engineering applications, a curvature-based model for analyzing compliant mechanisms capable of large deformation in a three dimensional space has been developed. Unlike methods (such as finite element) that formulate problems based on displacements and/or rotational angles, superposition holds for curvatures in the case of finite rotation but not for rotational angles; thus the curvature-based formulation presents an advantage in presenting nonlinear geometries. Along with a generalized constraint that relaxes traditional boundary constraints (such as fixed, pinned or sliding constraint) on compliant mechanisms, the method of deriving the compliant members in the same global referenced frame is presented. The attractive features of the method, which greatly simplifies the models and improves the computation efficiency of multi-body system deformation where compliant beams play an important role, have been experimentally validated. To demonstrate the applicability of this proposed method to a broad spectrum of applications, three practical examples are given; the first example verifies the generalized constraint by analyzing the multi-axis rotation motion within a natural human knee joint and investigates the human-exoskeleton interactions through dynamic analysis. The second example studies a deformable bio-structure by incorporating the generalized joint constraint into the curvature-based model for automated poultry meat processing. The last example designs a bio-inspired robot with a compliant mechanism to serve as a flexonic mobile node for ferromagnetic structure health monitoring. The analytical models have been employed (with experimental validation) to investigate the effects of different joint constraints on the mechanism deformations. It is expected that the proposed method will find a broad range of applications involving compliant mechanisms.

【 预 览 】
附件列表
Files Size Format View
Effects of joint constraints on deformation of multi-body compliant mechanisms 4063KB PDF download
  文献评价指标  
  下载次数:23次 浏览次数:25次