学位论文详细信息
Formation of Aromatic Compounds by Cyclopentadiene Moieties in Combustion Processes
Cyclopentadiene;Pyrolysis;Polycyclic aromatic hydorcarbons;Polychlorinated naphthalenes;Polychlorinated dibenzofurans;Chlorinated phenols
Kim, Do Hyong ; Civil and Environmental Engineering
University:Georgia Institute of Technology
Department:Civil and Environmental Engineering
关键词: Cyclopentadiene;    Pyrolysis;    Polycyclic aromatic hydorcarbons;    Polychlorinated naphthalenes;    Polychlorinated dibenzofurans;    Chlorinated phenols;   
Others  :  https://smartech.gatech.edu/bitstream/1853/7241/1/kim_dohyong_200508_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Polycyclic aromatic hydrocarbon (PAH) formation and growth from cyclopentadiene (CPD) moieties have been investigated using a laminar flow reactor and molecular modeling. The resonance-stabilized cyclopentadienyl radical is readily formed in flames and can participate in PAH growth to soot by reaction with the ??onds of aromatic species. Both CPD pyrolysis and computational results indicate that formation of indene and benzene is favored at low temperatures (below 750oC) and formation of naphthalene is favored at high temperatures. Reaction pathways from CPD have further been extended to PAH formation from the reaction of CPD and aromatic compounds with different types of ??onds. Results indicate that, while the major products from the pyrolysis of CPD, acenaphthylene, styrene and phenanthrene mixtures are from the reaction of CPD to itself rather than to these aromatic compounds with different ??onds, CPD does add to these compounds to produce larger PAH.Polychlorinated naphthalene (PCN) formation from chlorinated phenols has also been studied. In combustion exhaust gas, chlorinated phenols can produce dioxin as well as PCNs. PCN and polychlorinated dibenzofuran (PCDF) congener product distributions were consistent with proposed pathways involving phenoxy radical coupling at unchlorinated ortho-carbon sites. Tautomerization of the phenoxy radical coupling and subsequent fusion via H2O loss results in PCDF formation. Competing with this reaction pathway, CO elimination and subsequent fusion via hydrogen and/or chlorine loss was found to produce PCNs. PCDF isomer distributions were found to be weakly dependent to temperature, whereas PCN isomer distributions were found to be more temperature sensitive with selectivity to particular isomers decreasing with increasing temperature.Results of this research contribute to a better understanding of chemical mechanisms involved in the formation of toxic byproducts and soot in combustion systems.

【 预 览 】
附件列表
Files Size Format View
Formation of Aromatic Compounds by Cyclopentadiene Moieties in Combustion Processes 6670KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:10次