学位论文详细信息
Optogenetic dissection of septohippocampal neural circuitry for the treatment of epilepsy
Optogenetics;Medial septum
Laxpati, Nealen G. ; Gross, Robert E. Biomedical Engineering (Joint GT/Emory Department) Ressler, Kerry J. Stanley, Garrett B. Manns, Joseph R. Jaeger, Dieter ; Gross, Robert E.
University:Georgia Institute of Technology
Department:Biomedical Engineering (Joint GT/Emory Department)
关键词: Optogenetics;    Medial septum;   
Others  :  https://smartech.gatech.edu/bitstream/1853/54895/1/LAXPATI-DISSERTATION-2015.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】
Over 50 million people worldwide suffer from epilepsy. Of these, nearly a third will be refractory to medical therapy, and many will be poor candidates for surgical resection. Thus there is a need for novel targets and therapies, the former of which will require a greater understanding of neural networks involved in epilepsy, and the latter of which demands the development of novel therapeutic techniques. Seizures are less frequent during periods where theta – a 3-12Hz oscillatory rhythm in the hippocampal local field potential – is present. Theta is thought to originate in the medial septum, a basal forebrain structure that projects to the site of origin for the most common form of intractable epilepsy, the hippocampus. As has been demonstrated with pharmacologic and electrical stimulation, theta generation via the medial septum is consequently an ideal target for intervention. However, of the three neuron populations within the medial septum – cholinergic, GABAergic, and glutamatergic – it is unclear which is responsible for theta, or indeed if a single population is driving the oscillation. Optogenetics, a novel technique that enables activation and inhibition of genetically-defined neurons on a millisecond time-scale, provides the means to functionally dissect this septohippocampal axis and leverage the results for seizure therapy. In this thesis, I detail the current state of deep brain stimulation for epilepsy, and describe our motivation for targeting the medial septum and the importance of the hippocampal theta rhythm. I describe new technologies, software, and adaptations to our electrophysiology platform, NeuroRighter, to enable concurrent optogenetic neuromodulation and electrophysiology in awake and behaving animals, and demonstrate how these technologies and techniques can be used in several experimental approaches. I next use this system to show that both the GABAergic and glutamatergic neurons of the medial septum can drive and pace hippocampal oscillatory rhythms, but only the glutamatergic neurons are necessary to maintain phase relationships between successive theta cycles. I also demonstrate that activating and inhibiting the cholinergic neurons of the medial septum does not alter hippocampal local field potential activity, but does alter single-unit firing rates. These results shed light on the function of the medial septum in generating and modulating theta, and provide clear targets for optogenetic modulation of epilepsy.
【 预 览 】
附件列表
Files Size Format View
Optogenetic dissection of septohippocampal neural circuitry for the treatment of epilepsy 8111KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:4次