The development of new charge transport materials for use in phosphorescent organic light-emitting diodes (OLEDs) remains an important area of research. In this thesis, several examples of carbazole-containing norbornene-based side-chain polymers were synthesized and studied. In addition, several examples of ambipolar transport moieties were produced by combining hole- (carbazole) and electron- (oxadiazole or triazole) transport groups and examined as both small molecules and as norbornene-based side-chain polymers. UV-visible absorption, fluorescence spectroscopy, cyclic voltammetry, and other methods were used to evaluate the properties of the charge transport materials for use as hole- and/or host layers. It was found that side-functionalization produced polymers with photophysical and electrochemical properties corresponding to the charge transport side groups attached.In addition, several crosslinkable hole-transporting materials (copolymer or small molecule-based) incorporating either benzocyclobutenes, trifluorovinyl ethers, oxetanes, or bis(styrene)s were developed. Thin-films of the crosslinkable materials were shown to be readily insolubilized by thermal treatment permitting the deposition of a subsequent layer from solution onto the crosslinked layer. OLEDs fabricated using several of these materials produced efficient devices. Overall, it was shown that side-chain functionalization can be used to afford solution-processable charge transport polymers where the properties are determined mainly by the side group attached. As such, this approach could be extended to additional examples of charge transport moieties.
【 预 览 】
附件列表
Files
Size
Format
View
Solution-processable charge transport layers for phosphorescent OLEDs