In this dissertation, the multiple facets of benzodithiophene (BDT) units are explored, with a focus on understanding how the isomerism of the BDT structure affects the macroscopic properties of the oligomeric and polymeric materials created. First, the story focuses on an overview of the BDT synthons and their applications in organic electronics. A straightforward synthesis of BDT and its derivatization to seven π-conjugated building blocks and seven polymers is presented. Then, symmetric (donor)2-acceptor (D2-A) dye architecture for application in dye-sensitized solar cells are investigated. Two isomeric systems are studied, and the branched sensitizers show a greater incident photon-to-current efficiency than the linear dyes. The nature of the accepting core is also varied between dibenzophenazine to dithienophenazine. The sensitizer with the weakest accepting core displays the best photovoltaic performance, due to an increase in theopen-circuit voltage of ~100 mV caused by the favorable shift of the metal oxide conduction band. Lastly, a study of the donating building blocks in these (D2-A) sensitizers demonstrates that increasing the number of donor units from two to six thiophene moiety doubles the solar cell performance, due to the improvement of the light harvesting ability.
【 预 览 】
附件列表
Files
Size
Format
View
Tailoring benzodithiophene core molecules for organic electronic applications