学位论文详细信息
Validated Continuation for Infinite Dimensional Problems
Continuation;Equilibria of PDEs;Chaos in ODEs;Periodic solutions of delay equations
Lessard, Jean-Philippe ; Mathematics
University:Georgia Institute of Technology
Department:Mathematics
关键词: Continuation;    Equilibria of PDEs;    Chaos in ODEs;    Periodic solutions of delay equations;   
Others  :  https://smartech.gatech.edu/bitstream/1853/19861/1/lessard_jeanphilippe_200712_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Studying the zeros of a parameter dependent operator F defined on a Hilbert space H is a fundamental problem in mathematics. When the Hilbert space is finite dimensional, continuation provides, via predictor-corrector algorithms, efficient techniques to numerically follow the zeros of F as we move the parameter. In the case of infinite dimensional Hilbert spaces, this procedure must be applied to some finite dimensional approximation which of course raises the question of validity of the output. We introduce a new technique that combines the information obtained from the predictor-corrector steps with ideas from rigorous computations and verifies that the numerically produced zero for the finite dimensional system can be used to explicitly define a set which contains a unique zero for the infinite dimensional problem F: HxR->Im(F).We use this new validated continuation to study equilibrium solutions of partial differential equations, to prove the existence of chaos in ordinary differential equations and to follow branches of periodic solutions of delay differential equations. In the context of partial differential equations, we show that the cost of validated continuation is less than twice the cost of the standard continuation method alone.

【 预 览 】
附件列表
Files Size Format View
Validated Continuation for Infinite Dimensional Problems 4405KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:11次