学位论文详细信息
Theoretical and numerical studies of semiconducting carbon nanotubes
Nanotechnology;Monte Carlo method;Carbon nanotubes
Verma, Amit ; Electrical and Computer Engineering
University:Georgia Institute of Technology
Department:Electrical and Computer Engineering
关键词: Nanotechnology;    Monte Carlo method;    Carbon nanotubes;   
Others  :  https://smartech.gatech.edu/bitstream/1853/10457/1/verma_amit_200605_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Carbon nanotubes have excellent potential as basic building blocks for nanometer scale electron devices. Of particular interest in this context are their electron transport properties at high electric fields and at ambient temperature. Because the envisioned device switching times are very short and device dimensions small, not only steady-state, but also transient phenomena need to be explored. In this study are presented results of ensemble Monte Carlo simulations for carbon nanotubes, focusing particularly on semiconducting, single wall, zigzag (n,0) structures of wide ranging diameters. The basis for the Monte Carlo simulations are electronic structure calculations in the framework of a tight binding model. The principal scattering mechanism considered is due to the electron-phonon interaction. From the ensemble Monte Carlo simulation we determine the evolution of the electron distribution function as a function of position and time. Interesting behavior, not observed in conventional semiconducting materials, are observed in carbon nanotubes. The results presented help to place bounds on the device speeds that may be expected, and support the potential of semiconducting carbon nanotubes for high-speed electron device applications.

【 预 览 】
附件列表
Files Size Format View
Theoretical and numerical studies of semiconducting carbon nanotubes 1715KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:11次