学位论文详细信息
Processing of Boron Carbide
Pressureless sintering;Boron carbide
Cho, Namtae ; Materials Science and Engineering
University:Georgia Institute of Technology
Department:Materials Science and Engineering
关键词: Pressureless sintering;    Boron carbide;   
Others  :  https://smartech.gatech.edu/bitstream/1853/11567/1/cho_namtae_200608_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

The processing of boron carbide powder including sintering optimization, green body optimization and sintering behavior of nano-sized boron carbide was investigated for the development of complex shaped body armor. Pressureless sintered B4C relative densities as high as 96.7% were obtained by optimizing the soak temperature, and holding at that temperature for the minimum time required to reach terminal density. Although the relative densities of pressureless sintered specimens were lower than that of commercially produced hot-pressed B4C, their (Vickers) hardness values were comparable. For 4.45cm diameter and 1.35cm height disk shaped specimens, pressureless sintered to at least 93.0% relative density, post-hot isostatic pressing resulted in vast increases in relative densities (e.g. 100.0%) and hardness values significantly greater than that of commercially produced hot-pressed B4C. The densification behavior of 20-40nm graphite-coated B4C nano-particles was studied using dilatometry, x-ray diffraction and electron microscopy. The higher than expected sintering onset from a nano-scale powder (15008C) was caused by remnant B2O3 not removed by methanol washing, keeping particles separated until volatilization and the carbon coatings, which imposed particle to particle contact of a substance more refractory than B4C. Solid state sintering (1500-18508C) was followed by an arrest in contraction attributed to formation of eutectic liquid droplets of size more than 10X the original nano-particles. These droplets, induced to form well below known B4C-graphite eutectic temperatures by the high surface energy of nano-particles, are interpreted to have quickly solidified to form a vast number of voids in particle packing, which in turn, impeded continued solid state sintering. Starting at 22008C, a permanent liquid phase formed which facilitated a rapid measured contraction by liquid phase sintering and/or compact slumping.

【 预 览 】
附件列表
Files Size Format View
Processing of Boron Carbide 11938KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:12次