学位论文详细信息
Noncoherent receiver designs for ultra-wideband systems
Ultra-wideband communications;Wireless communications;Detection and estimation;Noncoherent detection
Zhou, Qi ; Ma, Xiaoli Electrical and Computer Engineering Zhou, G. Tong Xu, Jun Durgin, Gregory D. Bennett, Gisele ; Ma, Xiaoli
University:Georgia Institute of Technology
Department:Electrical and Computer Engineering
关键词: Ultra-wideband communications;    Wireless communications;    Detection and estimation;    Noncoherent detection;   
Others  :  https://smartech.gatech.edu/bitstream/1853/49067/1/ZHOU-DISSERTATION-2013.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

UWB communication is an attractive technology that has the potential to provide low-power, low-complexity, and high-speed communications in short range links. One of the main challenges of the UWB communications is the highly frequency-selective channel, which induces hundreds of overlapped copies of the transmitted pulse with different delays and amplitudes. To collect the energy of these multipath components, coherent Rake receivers are proposed, but suffer from high implementation and computational costs on channel estimation. To avoid the stringent channel estimation, several noncoherent receivers, including energy detector (ED) and transmitted reference (TR),are proposed at the cost of degraded performance. In addition, when taking into account practical issues of UWB communications, e.g., non-Gaussian impulsive noise, non-ideal antennas, and limited, significant performance degradation may be introduced by noncoherent receivers. In this dissertation, we will present low-complexity, high-performance, noncoherent receiver designs for UWB communications that i) avoid the stringent channel estimation; ii) lower the computational complexity of the existing receivers with the aid of advanced digital signal processing techniques; and iii) improve the error performance of the noncoherent receivers by accommodating practical imperfections. First, we propose three multi-symbol detectors (MSDs) formulti-symbol different detection (MSDD), which has recently caught attention in UWB communications because of its high performance without requiring explicit channel estimation. To alleviate the non-deterministic polynomial hardness (NP-hard) of MSDD, we analyze the statistical model of MSDD and propose an iterative MSD and two MSDs based on relaxation technique with near-optimal performance and low complexity. Moreover, the error performance of MSDs is further enhanced by exploiting joint soft-input soft-output MSDD and forward error correction codes. Next, we consider the non-Gaussian noise in the presence of multi-access interference, which is impulsive when the number of active users is small. To mitigate the impulsive noise effect, in this dissertation, we propose new differential UWB receivers based on the generalized Gaussian distribution and Laplace distribution and achieve better error performance. Another main issue of UWB communications is the limited radio coverage. To extend the coverage and improve the performance of UWB systems, we focus on a novel differentially encoded decode-and-forward (DF) non-cooperative relaying scheme. Putting emphasis on the general case of multi-hop relaying, we illustrate a novel algorithm for the joint power allocation and path selection (JPAPS), minimizing an approximate of the overall bit error rate (BER). A simplified scheme is also presented, which reduces the complexity to O(N²) and achieves a negligible performance loss. Finally, we concentrate on code-multiplexing (CM) systems, which have recently drawn attention mainly because they enable noncoherent detection without requiring either a delay component, as in TR, or an analog carrier, as in frequency-shifted reference. In this dissertation, we propose a generalized code-multiplexing (GCM) system based on the formulation of a constrained mixed-integer optimization problem. The GCM extends the concept of existing CM while retaining their simple receiver structure, even offering better BER performance and a higher data rate in the sense that more data symbols can be embedded in each transmitted block. Moreover, the impacts of non-ideal antennas on the GCM systems are investigated given some practical antenna measurement data and IEEE 802.15.4a channel environments.

【 预 览 】
附件列表
Files Size Format View
Noncoherent receiver designs for ultra-wideband systems 1396KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:7次