学位论文详细信息
Directing the migration of mesenchymal stem cells with superparamagnetic iron oxide nanoparticles
Mechanobiology;SPIO;MSC
Sotto, David C. ; Bao, Gang Mechanical Engineering Temenoff, Johnna Sulchek, Todd Lee, Raphael C. Dawson, Michelle ; Bao, Gang
University:Georgia Institute of Technology
Department:Mechanical Engineering
关键词: Mechanobiology;    SPIO;    MSC;   
Others  :  https://smartech.gatech.edu/bitstream/1853/54897/1/SOTTO-DISSERTATION-2015.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Cell migration plays an important role in numerous normal and pathological processes. The physical mechanisms of adhesion, protrusion/extension, contractions, and polarization can regulate cell migration speed, persistence time, and downstream effects in paracrine and endocrine signaling. Methods for understanding these biophysical and biochemical responses to date have been limited to the use of external forces acting on mechanotransductive receptors. Additionally, as the use of magnetic nanoparticles for cell tracking and cell manipulation studies continues to gain popularity, so does the importance of understanding the cellular response to mechanical forces caused by these magnetic systems. This thesis work utilizes superparamagnetic iron oxide nanoparticles and static magnets to induce an endogenous magnetic force on the cell membrane. This cell manipulation model is used to better understand the mechanobiological responses of mesenchymal stem cell to SPIO labeling and endogenous force generation. Directionally persistent motility, cytoskeletal reorganization, and altered pro-migratory cytokine secretion is reported in this thesis as a response to SPIO based cell manipulation.

【 预 览 】
附件列表
Files Size Format View
Directing the migration of mesenchymal stem cells with superparamagnetic iron oxide nanoparticles 4011KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:18次