学位论文详细信息
Compound droplets for lab-on-a-chip
Microfluidics;Droplet generation lab on a chip;Lab on a chip;Thermocapillarity
Black, James Aaron ; Neitzel, G. Paul Mechanical Engineering Peterson, G. P. "Bud" Smith, Marc K. Schatz, Michael Quéré, David ; Neitzel, G. Paul
University:Georgia Institute of Technology
Department:Mechanical Engineering
关键词: Microfluidics;    Droplet generation lab on a chip;    Lab on a chip;    Thermocapillarity;   
Others  :  https://smartech.gatech.edu/bitstream/1853/54947/1/BLACK-DISSERTATION-2016.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

The development of a novel method of droplet levitation to be employed in lab-on-a-chip (LOC) applications relies upon the mechanism of thermocapillary convection (due to the temperature dependence of surface tension) to drive a layer of lubricating gas between droplet and substrate. The fact that most droplets of interest in LOC applications are aqueous in nature, coupled with the fact that success in effecting thermocapillary transport in aqueous solutions has been limited, has led to the development of a technique for the controlled encapsulation of water droplets within a shell of inert silicone oil. These droplets can then be transported, virtually frictionlessly, resulting in ease of transport due to the lack of friction as well as improvements in sample cross-contamination prevention for multiple-use chips. Previous reports suggest that levitation of spherical O(nL)-volume droplets requires squeezing to increase the apparent contact area over which the pressure in the lubricating layer can act allowing sufficient opposition to gravity. This research explores thermocapillary levitation and translation of O(nL)-volume single-phase oil droplets; generation, capture, levitation, and translation of O(nL)-volume oil-encapsulated water droplets to demonstrate the benefits and applicability to LOC operations.

【 预 览 】
附件列表
Files Size Format View
Compound droplets for lab-on-a-chip 3173KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:6次