Favreau, Jorie Marie ; Richard Lancia, Committee Member,Nick Haddad, Committee Member,Roger A. Powell, Committee Chair,Michael Mitchell, Committee Member,Roland Kays, Committee Member,George R. Hess, Committee Member,Favreau, Jorie Marie ; Richard Lancia ; Committee Member ; Nick Haddad ; Committee Member ; Roger A. Powell ; Committee Chair ; Michael Mitchell ; Committee Member ; Roland Kays ; Committee Member ; George R. Hess ; Committee Member
Movement is nearly universal in the animal kingdom.Movements of animals influence not only themselves but also plant communities through processes such as seed dispersal, pollination, and herbivory.Understanding movement ecology is important for conserving biodiversity and predicting the spread of diseases and invasive species.Three factors influence nearly all movement.First, most animals move to find food.Thus, foraging dictates, in part, when and where to move.Second, animals must move by some rule even if the rule is "move at random."Third, animals' cognitive capabilities affect movement; even bees incorporate past experience into foraging.Although other factors such as competition and predation may affect movement, these three factors are the most basic to all movement.I simulated animal movement on landscapes with variable amounts of food per food patch, variable number of patches, and variable spatial distributions of food patches.From the results of my simulations, I formulated a series of hypotheses about the effects of food abundance on animal movement in nature.I also resolved the apparent paradox of real animals' movements sometimes correlating positively and sometimes negatively with food abundance.I simulated variable foraging rules belonging to 3 different classes of rules (when to move, where to move, and the scale at which to assess the landscape).Simulating foraging rules demonstrated that variations in richness and density tend to have the same effects on movements, regardless of foraging rules.Still, foraging rules affect the absolute distance and frequency of movements.In my third set of simulations, I simulated a range of spatial and temporal cognitive constraints and demonstrated that omniscience is not necessarily the optimal cognitive state from an energetic standpoint.I tested my hypotheses on the effects of food abundance with data from free ranging female black bears (Ursus americanus) in Pisgah Bear Sanctuary (North Carolina, USA) and female kinkajous (Potos flavus) in Parque National Soberanía (Panama), two species with low predation risk.Depending on the season, black bear movements can be explained, by food patch richness, density or both richness and density.Kinkajou move length but not number of moves can be explained by patch richness and density.Instead of kinkajous adjusting their number of moves when food density changed, kinkajous increased the amount of time they foraged.Moonlight was also a good predictor of number of moves.None of kinkajous' 3 dietary preferences best explained moves.
【 预 览 】
附件列表
Files
Size
Format
View
The Effects of Food Abundance, Foraging Rules and Cognitive Abilities on Local Animal Movements