学位论文详细信息
Modeling and validations of control parameters for material extrusion-based additive manufacturing of thixotropic aluminum alloys.
additive manufacturing;metal;3D printing
Lars Herhold
University:University of Louisville
Department:Industrial Engineering
关键词: additive manufacturing;    metal;    3D printing;   
Others  :  https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=4172&context=etd
美国|英语
来源: The Universite of Louisville's Institutional Repository
PDF
【 摘 要 】
Additive Manufacturing (AM) with metals has been accomplished mainly through powder bed fusion processes. Initial experiments and simulations using Material Extrusion Additive Manufacturing (MEAM) have been performed by various researchers especially using low melting alloys. Recently Stratasys Inc. submitted a patent application for the use of their Material Extrusion technology also called Fused Deposition Modeling (FDM) where they describe the process using thixotropic semi-solid alloys. Currently this process using semi-solid, engineering type alloys such as A356 or THIXALLOY 540 aluminum have not been researched to evaluate the control parameters. This research combines the in-depth knowledge of applying thixotropic semi-solid aluminum alloy processing as used in thixocasting and thixoforming with the MEAM research. Successful implementation of this metal AM process category besides powder bed fusion would result in the gain of certain MEAM process advantages like speed and ease of material handling (filament) for metal AM. In this dissertation thixotropic aluminum alloys have been identified for their applicability for MEAM and optimal pre-processing as well as thermo-mechanical handling in a nozzle has been identified. A review of the optimal heating temperature for an aligned quality of microstructure were completed to provide experimental proof of thixotropic aluminum alloy applicability. As further research aging of such alloys during isothermal holding while pausing or pure movement of a MEAM nozzle will help to derive the required cleaning processes in case the alloy develops an in-adequate microstructure. The research results build the basis for the next phases towards a larger project goal of developing a successful MEAM machine for producing aluminum alloy parts.
【 预 览 】
附件列表
Files Size Format View
Modeling and validations of control parameters for material extrusion-based additive manufacturing of thixotropic aluminum alloys. 11930KB PDF download
  文献评价指标  
  下载次数:26次 浏览次数:19次