Arsenic is a naturally prevalent metalloid. Chronic arsenic ingestion through drinking water causes skin cancer. Arsenic-induced cancer mechanisms are not well defined. Epigenetic changes, including microRNA expression changes, might be playing a role. This dissertation investigates the impact of miRNA expression changes in arsenic-induced skin cancer. MiRNA expression was measure and compared using 3 different techniques, RTq-PCR, hybridization arrays and RNA-sequencing. MiRNAs differential expression in skin lesions was phenotype- and stage-related. Immortalized human keratinocytes (HaCaT) were transformed by chronic low arsenite exposure serving as a model for arsenic-induced skin carcinogenesis. Early changes in miRNAs and target mRNAs contribute to arsenic-induced carcinogenesis. Throughout the time course of arsenic exposure, dysregulation of cells’ growth and cancer-related pathways were identified. Comparisons between the miRNA profiles in lesions and cells predict some miRNAs may serve as biomarkers and/or therapeutic targets for arsenic-induced tumors. This dissertation provides strong evidences of epigenetic changes related to carcinogenesis in arsenic-induced skin cancer.
【 预 览 】
附件列表
Files
Size
Format
View
MiRNA expression changes in arsenic-induced skin cancer in vitro and in vivo.