Previous work in Integro-Difference models have generally considered Allee effects and over-compensation separately, and have either focused on bounded domain problems or asymptotic spreading results. Some recent results by Sullivan et al. (2017 PNAS 114(19), 5053-5058) combining Allee and over-compensation in an Integro-Difference framework have shown chaotic fluctuating spreading speeds. In this thesis, using a tractable parameterized growth function, we analytically demonstrate that when Allee and over-compensation are present solutions which persist but essentially remain in a compact domain exist. We investigate the stability of these solutions numerically. We also numerically demonstrate the existence of such solutions for more general growth functions.
【 预 览 】
附件列表
Files
Size
Format
View
Nonspreading solutions in integro-difference models with allee and overcompensation effects.