学位论文详细信息
Plasma catalysis using low melting point metals.
Plasma catalysis, low melting point metals, gallium
Maria Carreon
University:University of Louisville
Department:Chemical Engineering
关键词: Plasma catalysis, low melting point metals, gallium;   
Others  :  https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=3277&context=etd
美国|英语
来源: The Universite of Louisville's Institutional Repository
PDF
【 摘 要 】

Plasma catalysis is emerging as one of the most promising alternatives to carry out several reactions of great environmental importance, from the synthesis of nanomaterials to chemicals of great interest. However, the combined effect of a catalyst and plasma is not clear. For the particular case of 1-D nanomaterials growth, the low temperatures synthesis is still a challenge to overcome for its scalable manufacturing on flexible substrates and thin metal foils. Herein, the use of low-melting-point metal clusters under plasma excitation was investigated to determine the effectiveness in their ability to catalyze the growth of 1-D nanomaterials. Specifically, plasma catalysis using Gallium (Ga) was studied for the growth of silicon nanowires. The synthesis experiments using silane in hydrogen flow over Ga droplets in the presence of plasma excitation yielded tip-led growth of silicon nanowires. In the absence of plasma, Ga droplets did not lead to silicon nanowire growth, indicating the plasma-catalyst synergistic effect when using Ga as catalyst. The resulting nanowires had a 1:1 droplet diameter to nanowire diameter relationship when the droplet diameters were less than 100 nm. From 100 nm to a micron, the ratio increased from 1:1 to 2:1 due to differences with wetting behavior as a function of droplet size. The growth experiments using Ga droplets derived from the reduction of Gallium oxide nanoparticles resulted in silicon nanowires with size distribution similar to that of Gallium oxide nanoparticles. Systematic experiments over 100 ºC – 500 ºC range suggest that the lowest temperature for the synthesis of silicon nanowires using the plasma-gallium system is 200 ºC. A set of experiments using Ga alloys with aluminum and gold was also conducted. The results show that both Ga rich alloys (Ga-Al and Ga-Au) allowed the growth of silicon nanowires at a temperature as low as 200 ºC. This temperature is the lowest reported when using either pure Al or Au. The estimated activation energy barrier for silicon nanowire growth kinetics using Al-Ga alloy (~48.6 kJ/mol) was higher compared to that using either pure Ga or Ga-Au alloy (~34 kJ/mol). The interaction between Ga and hydrogen was measured experimentally by monitoring pressure changes in a Ga packed batch reactor at constant temperature. The decrease of the pressure inside the reactor when the Ga was exposed to plasma indicated the absorption of hydrogen in Ga. The opposite effect is observed when the plasma is turned off suggesting that hydrogen desorbed from

【 预 览 】
附件列表
Files Size Format View
Plasma catalysis using low melting point metals. 7613KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:17次