学位论文详细信息
Global population distributions and the environment : discerning observed global and regional patterns.
population;random forest;population modeling;urban
Jeremiah J. Nieves
University:University of Louisville
Department:Geography and Geosciences
关键词: population;    random forest;    population modeling;    urban;   
Others  :  https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=3450&context=etd
美国|英语
来源: The Universite of Louisville's Institutional Repository
PDF
【 摘 要 】

Between 1990 to 2015, numerous groups used ancillary data about the environment surrounding populations to more accurately map global populations from standard census data. No comprehensive study has been undertaken to characterize the observed relationships between population density and ancillary data. Better understanding these relationships may produce more accurate population maps, focus resources on new datasets with a high probability of modelling importance, and lead to expanded end-user applications. This study examined these relationships by extracting variable importances from 36 independently run, country-specific population models from the WorldPop project’s population data. Covariate data describing urban/suburban extents were found to be the most significant predictors of population. Little difference was found in the resolution of urban/suburban data regarding their modelling importance. Further examination of the effect of different definitions of built-/urban-area, methods of quantifying input data quality, and the probability of specific variable classes as significant predictors of population is required.

【 预 览 】
附件列表
Files Size Format View
Global population distributions and the environment : discerning observed global and regional patterns. 2531KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:15次