学位论文详细信息
The effects of PVP(FE(III)) catalyst and polymer molecular weight on gene delivery via biodegradable crosslinked polyethylenimine
Non-viral gene delivery;polyethylenimine;polyethylenimines (PEI);biodegradable;cross-link;diacrylate;transfection;polyplex;cellular uptake
Shum, Wing T. ; Pack ; Daniel W.
关键词: Non-viral gene delivery;    polyethylenimine;    polyethylenimines (PEI);    biodegradable;    cross-link;    diacrylate;    transfection;    polyplex;    cellular uptake;   
Others  :  https://www.ideals.illinois.edu/bitstream/handle/2142/18635/Shum_Wing.pdf?sequence=1&isAllowed=y
美国|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

Human gene therapy has faced many setbacks due to the immunogenicity and oncogenity of viruses. Safe and efficient alternative gene delivery vehicles are needed to implement gene therapy in clinical practice. Polymeric vectors are an attractive option due to their availability, simple chemistry, and low toxicity and immunogenicity. Our group has previously reported biodegradable polyethylenimines (PEI) that show high transfection efficiency and low toxicity by cross-linking 800 Da PEI with diacrylate cross-linkers using Michael addition. However, the synthesis was difficult to control, inconsistent, and resulted in polymers with a narrow range of molecular weights. In the present work, we utilized a heterogenous PVP(Fe(III)) catalyst to provide a more controllable PEI crosslinking reaction and wider range of biodegradable PEIs. The biodegradable PEIs reported here have molecular weights ranging from 1.2 kDa to 48 kDa, are nontoxic in MDA-MB-231 cells, and show low toxicity in HeLa cells. At their respective optimal polymer:DNA ratios, these biodegradable PEIs demonstrated about 2-5-fold higher transfection efficiency and 2-7-fold higher cellular uptake, compared unmodified 25 kDa PEI. The biodegradable PEIs show similar DNA condensation properties as unmodified PEI but more readily unpackage DNA, based on ethidium bromide exclusion and heparan sulfate competitive displacement assays, which could contribute to their improved transfection efficiency. Overall, the synthesis reported here provides a more robust, controlled reaction to produce cross-linked biodegradable PEIs that show enhanced gene delivery, low toxicity, and high cellular uptake and can potentially be used for future in vivo studies.

【 预 览 】
附件列表
Files Size Format View
The effects of PVP(FE(III)) catalyst and polymer molecular weight on gene delivery via biodegradable crosslinked polyethylenimine 2199KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:30次