学位论文详细信息
Machine learning for biological networks
Machine Learning;Bioinformatics
Ding, Hantian ; Peng ; Jian
关键词: Machine Learning;    Bioinformatics;   
Others  :  https://www.ideals.illinois.edu/bitstream/handle/2142/108040/DING-THESIS-2020.pdf?sequence=1&isAllowed=y
美国|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

Genetic studies often involve huge number of covariants that interact with each other, in the form of expressions or mutations. It is crucial to mine important covariants associated with different diseases for better clinical treatment. Traditional statistical methods have been successful in testing single covariants, but are limited when studying the joint effect of multiple related genes. Hence, incorporating biological interaction networks becomes a promising approach for genetic association study. On the other hand, the advance of graph learning algorithms has made it possible to build data-driven models for large graph problems. These methods generally fall into two categories: 1) random walk and 2) deep graph neural net. We study how to leverage information from biological networks under these frameworks to solve genetic association problems on large scale. Towards this end, we have applied graph neural network to cancer prognostic prediction. We also develop a network diffusion method for variant association study for Parkinson's disease. Our results demonstrate the power of graph learning algorithms in biological domain.

【 预 览 】
附件列表
Files Size Format View
Machine learning for biological networks 1129KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:25次