学位论文详细信息
Spectroscopy and microscopy of transition metal chalcogenide nanomaterials
QD Chemistry
King, Martin O. ; Kadodwala, Malcolm
University:University of Glasgow
Department:School of Chemistry
关键词: Surface Science,Electron Microscopy,Photovoltaic,Nanomaterials,Cadmium Telluride,Copper Telluride;   
Others  :  http://theses.gla.ac.uk/4506/1/2013kingphd.pdf
来源: University of Glasgow
PDF
【 摘 要 】

This thesis details the physical and electronic structure of several technologically important transition metal chalcogenides (TMCs) using a combination of transmission electron microscopy (TEM) and surface science experimental techniques. The materials studied include CuxTe and CdTe, which find application in high efficiency, low weight photovoltaic devices. CuxTe alloys are frequently used as an electrical back contact in high efficiency CdTe photovoltaics. Here, we examine the alloying of Te on the Cu(111), polycrystalline Cu and Cu(643) surfaces. Chapter 3 of this thesis shows that the alloying of Te and Cu(111) is facile at room temperature, contrary to previous reports. Two distinct surface phases exist, depending on Te surface concentration. Below a coverage of 0.33 monolayers (MLs) of Te a surface substitutional alloy (SSA) is found to exist, where a Te adatom substituted for a surface Cu atom. For Te coverages greater than 0.66 ML, an unusual Cu3Te2 alloy continually grows on the surface, stabilised by a good lattice match to the Cu(111) substrate. The surface alloying of the Cu-Te system displays an intriguing dependence on the surface termination of the Cu substrate. Of the three Cu substrates studied here, Cu(111), Cu(643)R and polycrystalline Cu, a 1 ML film of Te gave orderedalloy structures with stoichiometries of Cu3Te2, CuTe and Cu2Te, respectively. In chapter 4, the study of thin film photovoltaics is extended to the deposition of CdTe onto Cu and CuxTe substrates. CdTe is observed to grow three dimensionally on Cu(111), Cu3Te2 and Cu2Te. Cu+ diffusion, crucial for photovoltaic performance, is detected for CdTethicknesses greater than 2 ML and is assigned, predominately, to Cu2Te crystallites forming within the CdTe layer, with a minor amount of Cu residing in interstitial sites in the host CdTe structure. Chapter 5 describes the alloying of Te with a intrinsically chiralsurface, Cu(643)R, the first study of its kind. The results of this study reveal that step mediated alloying occurs between Cu and Te with significant faceting of the surface. Two ordered CuTe alloy phases were observed for sub-monolayer Te coverages. The low coverage alloy exists for Te coverages between 0.18 ML and 0.45 ML and has a chiral unit cell. The high coverage alloy exists for Te coverages between 0.45 ML and 1.5 ML and has an achiral unit cell. The atomic positions of these surface alloys are tentatively interpreted from the scanning tunnelling microscopy (STM) images. In contrast to the thin film experiments in chapters 3-5, chapter 6 describes a study of TaS3 nanoribbons. These studies reveal that the nanoribbons have a distinct core-shell type structure. Characterisation with surface science techniques shows that the shell is nonstoichiometric and amorphous while TEM shows a crystalline core to the material. Interestingly, the TaS3 are observed to be unstable when interfaced on a Au substrate, with the shell persistently losing S to the substrate, which have potential implications in device integration.

【 预 览 】
附件列表
Files Size Format View
Spectroscopy and microscopy of transition metal chalcogenide nanomaterials 15888KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:7次