Intermittent Control, as a control scheme that switches between open and closed-loop configurations, has been suggested as an alternative model to describe human control and to explain the intermittency observed during sustained control tasks. Additionally, IC might be beneficial in the following scenarios: 1 - in the field of robotics, where open-loop evolution could be used for computationally intensive tasks such as constrained optimisation routines, 2 - in an adaptation context, helping to detect system and environmental variations. Based on these ideas, this thesis explored the application of real-time multivariable intermittent controllers in humanoid robotics as well as adaptive versions of IC implemented on inverted pendulum structures.
【 预 览 】
附件列表
Files
Size
Format
View
Adaptive multivariable intermittent control: theory, development, and applications to real-time systems