学位论文详细信息
Geometric Lifting of Affine Type A Crystal Combinatorics
crystals;geometric crystals;combinatorial $R$-matrix;Mathematics;Science;Mathematics
Frieden, GabrielSpeyer, David E ;
University of Michigan
关键词: crystals;    geometric crystals;    combinatorial $R$-matrix;    Mathematics;    Science;    Mathematics;   
Others  :  https://deepblue.lib.umich.edu/bitstream/handle/2027.42/147545/gfrieden_1.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

In the first part of this thesis, we construct a type $A_{n-1}^{(1)}$ geometric crystal on the variety $mathbb{X}_k := {rm Gr}(k,n) times mathbb{C}^times$, and show that it tropicalizes to the disjoint union of the Kirillov--Reshetikhin crystals corresponding to rectangular semistandard Young tableaux with $n-k$ rows. A key ingredient in our construction is the $mathbb{Z}/nmathbb{Z}$ symmetry of the Grassmannian which comes from cyclically shifting a basis of the underlying vector space. We show that a twisted version of this symmetry tropicalizes to combinatorial promotion.In the second part, we define and study the geometric $R$-matrix, a birational map $R : mathbb{X}_{k_1} times mathbb{X}_{k_2} rightarrow mathbb{X}_{k_2} times mathbb{X}_{k_1}$ which tropicalizes to the combinatorial $R$-matrix on pairs of rectangular tableaux. We show that $R$ is an isomorphism of geometric crystals, and that it satisfies the Yang--Baxter relation. In the case where both tableaux have one row, we recover the birational $R$-matrix of Yamada and Lam--Pylyavskyy. Most of the properties of the geometric $R$-matrix follow from the fact that it gives the unique solution to a certain equation of matrices in the loop group ${rm GL}_n(mathbb{C}(lambda))$.

【 预 览 】
附件列表
Files Size Format View
Geometric Lifting of Affine Type A Crystal Combinatorics 754KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:10次