学位论文详细信息
Retrospective Cost Methods for Combined State and Parameter Estimation
Parameter Estimation;Aerospace Engineering;Engineering;Aerospace Engineering
Yu, Ming-JuiSodano, Henry ;
University of Michigan
关键词: Parameter Estimation;    Aerospace Engineering;    Engineering;    Aerospace Engineering;   
Others  :  https://deepblue.lib.umich.edu/bitstream/handle/2027.42/138515/mingray_1.pdf?sequence=1&isAllowed=y
瑞士|英语
来源: The Illinois Digital Environment for Access to Learning and Scholarship
PDF
【 摘 要 】

This dissertation is principally concerned with the combined state and parameter estimation problem, where the goal is to estimate the state of a discrete-time, linear time-invariant system with structured uncertainty in the system dynamics. First, we prove necessary and sufficient conditions for the identifiability of unknown parameters within a state-space realization. Next, we evaluate the performance of classical techniques for solving the combined state and parameter estimation problem. We then formulate and test the retrospective cost parameter estimation algorithm under the assumption that the initial states are known. Two variants of the retrospective cost parameter estimation and smoothing algorithm are formulated and tested in the case where the initial states are unknown. Finally, the retrospective cost Kalman filter algorithm is formulated and tested for state estimation despite uncertain noise covariances and potentially nonzero-mean sensor and process noise.

【 预 览 】
附件列表
Files Size Format View
Retrospective Cost Methods for Combined State and Parameter Estimation 1167KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:19次